-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpark-memory-cal-app.py
45 lines (37 loc) · 2.02 KB
/
Spark-memory-cal-app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
from flask import Flask, render_template, request
app = Flask(__name__)
@app.route('/')
def index():
return render_template('index.html')
@app.route('/calculate', methods=['POST'])
def calculate():
ram_size = float(request.form['ram_size'])
cores_per_node = int(request.form['cores_per_node'])
cores_per_executor = int(request.form['cores_per_executor'])
number_of_nodes = int(request.form['number_of_nodes'])
memory_overhead = float(request.form.get('memory_overhead', 0.1))
total_cores = (number_of_nodes * cores_per_node) - number_of_nodes
total_memory_overhead = ((memory_overhead / 100) * ram_size ) * number_of_nodes
total_available_memory = (ram_size * number_of_nodes ) - total_memory_overhead
num_executors = round(cores_per_node / cores_per_executor) #--
memory_per_executor = total_available_memory / (num_executors * number_of_nodes)
total_number_of_executors= total_available_memory/memory_per_executor
number_of_executor_pernode=round(total_number_of_executors/number_of_nodes) #--
driver_memory = ram_size * 0.2
parallelism = num_executors * cores_per_node
shuffle_parallelism = int(parallelism * 1.5)
return render_template('result.html',
total_cores =total_cores,
total_memory_overhead=total_memory_overhead,
total_available_memory=total_available_memory,
num_executors=num_executors,
cores_per_executor=cores_per_executor,
memory_per_executor=memory_per_executor,
total_number_of_executors=total_number_of_executors,
number_of_executor_pernode=number_of_executor_pernode,
driver_memory=driver_memory,
cores_per_node=cores_per_node,
parallelism=parallelism,
shuffle_parallelism=shuffle_parallelism)
if __name__ == '__main__':
app.run(debug=True)