-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMFR_modules.py
172 lines (140 loc) · 5.11 KB
/
MFR_modules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# (100, 300, 3)의 output
# scaling 없이 => sigmoid로
import librosa
import numpy as np
import librosa.display
from sklearn.preprocessing import MinMaxScaler
from scipy.interpolate import RegularGridInterpolator #선형보간
import math
from scipy.ndimage import zoom
###################################### Modules
# base y, sr
def ext_base(path):
y, sr = librosa.load(path)
return y, sr
# Chroma_stft
def ext_chroma_stft(y, sr):
chroma_stft = librosa.feature.chroma_stft(y = y, sr = sr)
# (12,1200)의 형태
#print(f'original chroma_stft.shape : {chroma_stft.shape}')
#print(f'slicing to [:,:1200]')
chroma_stft = chroma_stft[:,:1200]
"""
print(f'---------check----------')
# 모두 양수인지 확인
if np.all(chroma_stft >= 0):
print(f'chroma_stft의 모든 원소가 양수')
else:
print(f'chroma_stft의 원소 중 음수가 존재')
# 최대최소값 확인
print(f'max : {np.max(chroma_stft)}')
print(f'min : {np.min(chroma_stft)}')
print(f'------------------------')
"""
return chroma_stft
# MFCC
def ext_mfcc(y, sr):
mfcc = librosa.feature.mfcc(y = y, sr = sr)
#print(f'original mfcc.shape : {mfcc.shape}')
#print(f'slicing to [:,:1200]')
mfcc = mfcc[:,:1200]
"""
print(f'scaling_minmax')
scaler = MinMaxScaler()
mfcc = scaler.fit_transform(mfcc.T).T
print(f'---------check----------')
if np.all(mfcc >= 0):
print(f'mfcc의 모든 원소가 양수')
else:
print(f'mfcc의 원소 중 음수가 존재')
print(f'max : {np.max(mfcc)}')
print(f'min : {np.min(mfcc)}')
print(f'------------------------')
"""
return mfcc # 2차원
# Tempogram
def ext_tempogram(y, sr):
tempo, beat_frames = librosa.beat.beat_track(y=y, sr=sr)
tempogram = librosa.feature.tempogram(y=y, sr=sr)
#print(f'slicing to [:,:1200]')
tempogram = tempogram[:,:1200]
"""
print(f'scaling_minmax')
scaler = MinMaxScaler()
tempogram = scaler.fit_transform(tempogram.T).T
print(f'---------check----------')
if np.all(tempogram >= 0):
print(f'mfcc의 모든 원소가 양수')
else:
print(f'mfcc의 원소 중 음수가 존재')
print(f'max : {np.max(tempogram)}')
print(f'min : {np.min(tempogram)}')
print(f'------------------------')
"""
return tempogram # 2차원
# 선형 보간
"""
def interpolate_array_height(arr, new_height):
# 주어진 배열의 크기
original_height, original_width = arr.shape
# 새로운 y 값 생성
y_new = np.linspace(0, original_height - 1, new_height)
# RegularGridInterpolator를 이용하여 보간된 함수 생성
interp_func = RegularGridInterpolator((np.arange(original_height), np.arange(original_width)), arr)
# 보간된 배열 생성
x_new = np.arange(original_width)
xx, yy = np.meshgrid(x_new, y_new)
points = np.array([yy, xx]).transpose((1, 2, 0))
arr_interpolated = interp_func(points)
return arr_interpolated
"""
# zoom을 이용한 resizing
def return_zoomed(arr, new_height, new_width):
zoomed = zoom(arr, (new_height/arr.shape[0], new_width/arr.shape[1]))
return zoomed
############################################## integrate
# input => 파일 경로
# output => (100, 300, 3)의 데이터 포인트
def ext_datapoint(path):
y ,sr = ext_base(path)
feature_list= []
chroma_stft = ext_chroma_stft(y, sr)
feature_list.append(chroma_stft)
mfcc = ext_mfcc(y, sr)
feature_list.append(mfcc)
tempogram = ext_tempogram(y, sr)
feature_list.append(tempogram)
# 선형 보간 => zoom 방식
new_height, new_width = 100,300
for idx, feature in enumerate(feature_list):
feature_list[idx] = return_zoomed(feature, new_height, new_width)
feature_list[idx] = np.expand_dims(feature_list[idx], axis = -1)
#print(f'-------------linear interpolating done--------------')
#print(f'-------------adding a dimension done--------------')
#print(f'check!')
for x in feature_list:
print(x.shape, end = ' ')
print()
### concatenate
concatenated = np.concatenate(feature_list, axis = -1)
#print(f'-------------concatenating done--------------')
#print(f'check!')
#print(f'concatenated.shape : {concatenated.shape}')
return concatenated
from tensorflow.keras.models import load_model
########################################### (1,H,W,C) return
def ext_sample_input(file_path):
sample_data = ext_datapoint(file_path)
sample_data = np.expand_dims(sample_data, axis = 0)
return sample_data
############################################ 10차원 결과 백터(list) return
def return_result(sample_input, model_path):
loaded_model = load_model(model_path)
prediction = loaded_model.predict(sample_input)
return prediction[0]
############################################ 10차원 결과 백터(list) return <= mk_4부터는 CRNN모델
def return_result_for_crnn(sample_input, model_path):
loaded_model = load_model(model_path)
sample_input = np.transpose(sample_input, (0,2,1,3))
prediction = loaded_model.predict(sample_input)
return prediction[0]