-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathil_train.py
81 lines (62 loc) · 2.74 KB
/
il_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
import torch_geometric
from agent import ImitationAgent
from utils import GraphDataset, seed_stochastic_modules_globally
import glob
import numpy as np
import os
import random
import pathlib
from tensorboardX import SummaryWriter
import hydra
from omegaconf import DictConfig
hydra.HYDRA_FULL_ERROR = 1
def init_save_dir(self, path='.', agent_name=None):
pathlib.Path(path).mkdir(parents=True, exist_ok=True)
@hydra.main(config_path='configs', config_name='config.yaml')
def run(cfg: DictConfig):
# seeding
if 'seed' not in cfg.experiment:
cfg.experiment['seed'] = random.randint(0, 10000)
seed_stochastic_modules_globally(cfg.experiment.seed)
writer = SummaryWriter(os.getcwd())
# initialise imitation agent
agent = ImitationAgent(device=cfg.experiment.device)
agent.train()
print('Initialised imitation agent.')
# get paths to labelled training and validation data
path = '../../../' + cfg.experiment.path_to_load_imitation_data
print(f'Loading imitation data from {path}...')
if not os.path.isdir(path):
raise Exception(f'Path {path} does not exist')
sample_files = np.array(glob.glob(path+'*.pkl'))[:cfg.experiment.num_samples]
train_files = sample_files[:int(0.83*len(sample_files))]
valid_files = sample_files[int(0.83*len(sample_files)):]
# init training and validaton data loaders
train_data = GraphDataset(train_files)
train_loader = torch_geometric.data.DataLoader(train_data, batch_size=64, shuffle=True, num_workers=8, pin_memory=True)
valid_data = GraphDataset(valid_files)
valid_loader = torch_geometric.data.DataLoader(valid_data, batch_size=256, shuffle=False, num_workers=8, pin_memory=True)
print('Initialised training and validation data loaders.')
for epoch in range(cfg.experiment.num_epochs):
train_loss, val_loss = 0, 0
train_iters, val_iters = 0, 0
agent.train()
for train_batch in train_loader:
train_batch = train_batch.to(agent.device)
train_loss += agent.update(train_batch)
train_iters += 1
train_loss /= train_iters
agent.eval()
for val_batch in valid_loader:
val_batch = val_batch.to(agent.device)
val_loss += agent.validate(val_batch)
val_iters += 1
val_loss /= val_iters
if epoch % cfg.experiment.epoch_log_frequency == 0:
writer.add_scalar('epoch/train_loss', train_loss, epoch)
writer.add_scalar('epoch/val_loss', val_loss, epoch)
if epoch % cfg.experiment.checkpoint_log_frequency == 0:
agent.save(os.getcwd(), epoch)
print("Epoch: %d\tTrain loss: %.12f\tVal loss: %.12f" % (epoch, train_loss, val_loss))
if __name__ == '__main__':
run()