-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrag.py
80 lines (62 loc) · 2.31 KB
/
rag.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
"""
Ejercicio 1:
Ejemplo tomando de https://python.langchain.com/docs/tutorials/rag/ con algunos
cambios menores (dotenv vs hardcoded API key, CLI e ignorar warnings de LangSmith)
Reimplementaremos este pipeline usando "python solo". Usaremos chroma como
almacén de vectores. El text splitter y el web base loader están permitidos.
Puedes usar otras librerías como beautifulsoup, requests, etc.
Sugerencias:
- Comienza con una solución simple: contexto del rag ficticio, sin usar un
vector store
- Haz una función para llamadas a la API de OpenAI sencilla
- Haz otra función para crear el prompt
La solución está en el módulo `solved`
"""
import sys
import warnings
from langchain_text_splitters import RecursiveCharacterTextSplitter
from langchain_openai import OpenAIEmbeddings
from langchain_core.runnables import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_community.document_loaders import WebBaseLoader
from langchain_chroma import Chroma
from langchain import hub
from langchain_openai import ChatOpenAI
import bs4
import dotenv
warnings.filterwarnings("ignore", message="API key must be provided")
dotenv.load_dotenv()
llm = ChatOpenAI(model="gpt-4o-mini")
# Load, chunk and index the contents of the blog.
loader = WebBaseLoader(
web_paths=("https://lilianweng.github.io/posts/2023-06-23-agent/",),
bs_kwargs=dict(
parse_only=bs4.SoupStrainer(
class_=("post-content", "post-title", "post-header")
)
),
)
docs = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000, chunk_overlap=200)
splits = text_splitter.split_documents(docs)
vectorstore = Chroma.from_documents(
documents=splits, embedding=OpenAIEmbeddings())
# Retrieve and generate using the relevant snippets of the blog.
retriever = vectorstore.as_retriever()
prompt = hub.pull("rlm/rag-prompt")
def format_docs(docs):
return "\n\n".join(doc.page_content for doc in docs)
rag_chain = (
{"context": retriever | format_docs, "question": RunnablePassthrough()}
| prompt
| llm
| StrOutputParser()
)
if __name__ == "__main__":
if len(sys.argv) > 1:
question = sys.argv[1]
else:
question = "What is Task Decomposition?"
print(f"Human: {question}")
print(f"Chatbot: {rag_chain.invoke(question)}")