forked from AllenDowney/ThinkBayes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprice.py
390 lines (289 loc) · 10.3 KB
/
price.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
"""This file contains code for use with "Think Bayes",
by Allen B. Downey, available from greenteapress.com
Copyright 2013 Allen B. Downey
License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html
"""
import csv
import numpy
import thinkbayes
import thinkplot
import matplotlib.pyplot as pyplot
FORMATS = ['png', 'pdf', 'eps']
def ReadData(filename='showcases.2011.csv'):
"""Reads a CSV file of data.
Args:
filename: string filename
Returns: sequence of (price1 price2 bid1 bid2 diff1 diff2) tuples
"""
fp = open(filename)
reader = csv.reader(fp)
res = []
for t in reader:
_heading = t[0]
data = t[1:]
try:
data = [int(x) for x in data]
# print heading, data[0], len(data)
res.append(data)
except ValueError:
pass
fp.close()
return zip(*res)
class Price(thinkbayes.Suite):
"""Represents hypotheses about the price of a showcase."""
def __init__(self, pmf, player, name=''):
"""Constructs the suite.
pmf: prior distribution of price
player: Player object
name: string
"""
thinkbayes.Suite.__init__(self, pmf, name=name)
self.player = player
def Likelihood(self, data, hypo):
"""Computes the likelihood of the data under the hypothesis.
hypo: actual price
data: the contestant's guess
"""
price = hypo
guess = data
error = price - guess
like = self.player.ErrorDensity(error)
return like
class GainCalculator(object):
"""Encapsulates computation of expected gain."""
def __init__(self, player, opponent):
"""Constructs the calculator.
player: Player
opponent: Player
"""
self.player = player
self.opponent = opponent
def ExpectedGains(self, low=0, high=75000, n=101):
"""Computes expected gains for a range of bids.
low: low bid
high: high bid
n: number of bids to evaluates
returns: tuple (sequence of bids, sequence of gains)
"""
bids = numpy.linspace(low, high, n)
gains = [self.ExpectedGain(bid) for bid in bids]
return bids, gains
def ExpectedGain(self, bid):
"""Computes the expected return of a given bid.
bid: your bid
"""
suite = self.player.posterior
total = 0
for price, prob in sorted(suite.Items()):
gain = self.Gain(bid, price)
total += prob * gain
return total
def Gain(self, bid, price):
"""Computes the return of a bid, given the actual price.
bid: number
price: actual price
"""
# if you overbid, you get nothing
if bid > price:
return 0
# otherwise compute the probability of winning
diff = price - bid
prob = self.ProbWin(diff)
# if you are within 250 dollars, you win both showcases
if diff <= 250:
return 2 * price * prob
else:
return price * prob
def ProbWin(self, diff):
"""Computes the probability of winning for a given diff.
diff: how much your bid was off by
"""
prob = (self.opponent.ProbOverbid() +
self.opponent.ProbWorseThan(diff))
return prob
class Player(object):
"""Represents a player on The Price is Right."""
n = 101
price_xs = numpy.linspace(0, 75000, n)
def __init__(self, prices, bids, diffs):
"""Construct the Player.
prices: sequence of prices
bids: sequence of bids
diffs: sequence of underness (negative means over)
"""
self.pdf_price = thinkbayes.EstimatedPdf(prices)
self.cdf_diff = thinkbayes.MakeCdfFromList(diffs)
mu = 0
sigma = numpy.std(diffs)
self.pdf_error = thinkbayes.GaussianPdf(mu, sigma)
def ErrorDensity(self, error):
"""Density of the given error in the distribution of error.
error: how much the bid is under the actual price
"""
return self.pdf_error.Density(error)
def PmfPrice(self):
"""Returns a new Pmf of prices.
A discrete version of the estimated Pdf.
"""
return self.pdf_price.MakePmf(self.price_xs)
def CdfDiff(self):
"""Returns a reference to the Cdf of differences (underness).
"""
return self.cdf_diff
def ProbOverbid(self):
"""Returns the probability this player overbids.
"""
return self.cdf_diff.Prob(-1)
def ProbWorseThan(self, diff):
"""Probability this player's diff is greater than the given diff.
diff: how much the oppenent is off by (always positive)
"""
return 1 - self.cdf_diff.Prob(diff)
def MakeBeliefs(self, guess):
"""Makes a posterior distribution based on estimated price.
Sets attributes prior and posterior.
guess: what the player thinks the showcase is worth
"""
pmf = self.PmfPrice()
self.prior = Price(pmf, self, name='prior')
self.posterior = self.prior.Copy(name='posterior')
self.posterior.Update(guess)
def OptimalBid(self, guess, opponent):
"""Computes the bid that maximizes expected return.
guess: what the player thinks the showcase is worth
opponent: Player
Returns: (optimal bid, expected gain)
"""
self.MakeBeliefs(guess)
calc = GainCalculator(self, opponent)
bids, gains = calc.ExpectedGains()
gain, bid = max(zip(gains, bids))
return bid, gain
def PlotBeliefs(self, root):
"""Plots prior and posterior beliefs.
root: string filename root for saved figure
"""
thinkplot.Clf()
thinkplot.PrePlot(num=2)
thinkplot.Pmfs([self.prior, self.posterior])
thinkplot.Save(root=root,
xlabel='price ($)',
ylabel='PMF',
formats=FORMATS)
def MakePlots(player1, player2):
"""Generates two plots.
price1 shows the priors for the two players
price2 shows the distribution of diff for the two players
"""
# plot the prior distribution of price for both players
thinkplot.Clf()
thinkplot.PrePlot(num=2)
pmf1 = player1.PmfPrice()
pmf1.name = 'showcase 1'
pmf2 = player2.PmfPrice()
pmf2.name = 'showcase 2'
thinkplot.Pmfs([pmf1, pmf2])
thinkplot.Save(root='price1',
xlabel='price ($)',
ylabel='PDF',
formats=FORMATS)
# plot the historical distribution of underness for both players
thinkplot.Clf()
thinkplot.PrePlot(num=2)
cdf1 = player1.CdfDiff()
cdf1.name = 'player 1'
cdf2 = player2.CdfDiff()
cdf2.name = 'player 2'
print 'Player median', cdf1.Percentile(50)
print 'Player median', cdf2.Percentile(50)
print 'Player 1 overbids', player1.ProbOverbid()
print 'Player 2 overbids', player2.ProbOverbid()
thinkplot.Cdfs([cdf1, cdf2])
thinkplot.Save(root='price2',
xlabel='diff ($)',
ylabel='CDF',
formats=FORMATS)
def MakePlayers():
"""Reads data and makes player objects."""
data = ReadData(filename='showcases.2011.csv')
data += ReadData(filename='showcases.2012.csv')
cols = zip(*data)
price1, price2, bid1, bid2, diff1, diff2 = cols
# print list(sorted(price1))
# print len(price1)
player1 = Player(price1, bid1, diff1)
player2 = Player(price2, bid2, diff2)
return player1, player2
def PlotExpectedGains(guess1=20000, guess2=40000):
"""Plots expected gains as a function of bid.
guess1: player1's estimate of the price of showcase 1
guess2: player2's estimate of the price of showcase 2
"""
player1, player2 = MakePlayers()
MakePlots(player1, player2)
player1.MakeBeliefs(guess1)
player2.MakeBeliefs(guess2)
print 'Player 1 prior mle', player1.prior.MaximumLikelihood()
print 'Player 2 prior mle', player2.prior.MaximumLikelihood()
print 'Player 1 mean', player1.posterior.Mean()
print 'Player 2 mean', player2.posterior.Mean()
print 'Player 1 mle', player1.posterior.MaximumLikelihood()
print 'Player 2 mle', player2.posterior.MaximumLikelihood()
player1.PlotBeliefs('price3')
player2.PlotBeliefs('price4')
calc1 = GainCalculator(player1, player2)
calc2 = GainCalculator(player2, player1)
thinkplot.Clf()
thinkplot.PrePlot(num=2)
bids, gains = calc1.ExpectedGains()
thinkplot.Plot(bids, gains, label='Player 1')
print 'Player 1 optimal bid', max(zip(gains, bids))
bids, gains = calc2.ExpectedGains()
thinkplot.Plot(bids, gains, label='Player 2')
print 'Player 2 optimal bid', max(zip(gains, bids))
thinkplot.Save(root='price5',
xlabel='bid ($)',
ylabel='expected gain ($)',
formats=FORMATS)
def PlotOptimalBid():
"""Plots optimal bid vs estimated price.
"""
player1, player2 = MakePlayers()
guesses = numpy.linspace(15000, 60000, 21)
res = []
for guess in guesses:
player1.MakeBeliefs(guess)
mean = player1.posterior.Mean()
mle = player1.posterior.MaximumLikelihood()
calc = GainCalculator(player1, player2)
bids, gains = calc.ExpectedGains()
gain, bid = max(zip(gains, bids))
res.append((guess, mean, mle, gain, bid))
guesses, means, _mles, gains, bids = zip(*res)
thinkplot.PrePlot(num=3)
pyplot.plot([15000, 60000], [15000, 60000], color='gray')
thinkplot.Plot(guesses, means, label='mean')
#thinkplot.Plot(guesses, mles, label='MLE')
thinkplot.Plot(guesses, bids, label='bid')
thinkplot.Plot(guesses, gains, label='gain')
thinkplot.Save(root='price6',
xlabel='guessed price ($)',
formats=FORMATS)
def TestCode(calc):
"""Check some intermediate results.
calc: GainCalculator
"""
# test ProbWin
for diff in [0, 100, 1000, 10000, 20000]:
print diff, calc.ProbWin(diff)
print
# test Return
price = 20000
for bid in [17000, 18000, 19000, 19500, 19800, 20001]:
print bid, calc.Gain(bid, price)
print
def main():
PlotExpectedGains()
PlotOptimalBid()
if __name__ == '__main__':
main()