forked from AllenDowney/ThinkBayes
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy paththinkstats.py
164 lines (121 loc) · 3.36 KB
/
thinkstats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""This file contains code for use with "Think Stats",
by Allen B. Downey, available from greenteapress.com
Copyright 2010 Allen B. Downey
License: GNU GPLv3 http://www.gnu.org/licenses/gpl.html
"""
import bisect
import random
def Mean(t):
"""Computes the mean of a sequence of numbers.
Args:
t: sequence of numbers
Returns:
float
"""
return float(sum(t)) / len(t)
def MeanVar(t):
"""Computes the mean and variance of a sequence of numbers.
Args:
t: sequence of numbers
Returns:
tuple of two floats
"""
mu = Mean(t)
var = Var(t, mu)
return mu, var
def Trim(t, p=0.01):
"""Trims the largest and smallest elements of t.
Args:
t: sequence of numbers
p: fraction of values to trim off each end
Returns:
sequence of values
"""
n = int(p * len(t))
t = sorted(t)[n:-n]
return t
def Jitter(values, jitter=0.5):
"""Jitters the values by adding a uniform variate in (-jitter, jitter)."""
return [x + random.uniform(-jitter, jitter) for x in values]
def TrimmedMean(t, p=0.01):
"""Computes the trimmed mean of a sequence of numbers.
Side effect: sorts the list.
Args:
t: sequence of numbers
p: fraction of values to trim off each end
Returns:
float
"""
t = Trim(t, p)
return Mean(t)
def TrimmedMeanVar(t, p=0.01):
"""Computes the trimmed mean and variance of a sequence of numbers.
Side effect: sorts the list.
Args:
t: sequence of numbers
p: fraction of values to trim off each end
Returns:
float
"""
t = Trim(t, p)
mu, var = MeanVar(t)
return mu, var
def Var(t, mu=None):
"""Computes the variance of a sequence of numbers.
Args:
t: sequence of numbers
mu: value around which to compute the variance; by default,
computes the mean.
Returns:
float
"""
if mu is None:
mu = Mean(t)
# compute the squared deviations and return their mean.
dev2 = [(x - mu)**2 for x in t]
var = Mean(dev2)
return var
def Binom(n, k, d={}):
"""Compute the binomial coefficient "n choose k".
Args:
n: number of trials
k: number of successes
d: map from (n,k) tuples to cached results
Returns:
int
"""
if k == 0:
return 1
if n == 0:
return 0
try:
return d[n, k]
except KeyError:
res = Binom(n-1, k) + Binom(n-1, k-1)
d[n, k] = res
return res
class Interpolator(object):
"""Represents a mapping between sorted sequences; performs linear interp.
Attributes:
xs: sorted list
ys: sorted list
"""
def __init__(self, xs, ys):
self.xs = xs
self.ys = ys
def Lookup(self, x):
"""Looks up x and returns the corresponding value of y."""
return self._Bisect(x, self.xs, self.ys)
def Reverse(self, y):
"""Looks up y and returns the corresponding value of x."""
return self._Bisect(y, self.ys, self.xs)
def _Bisect(self, x, xs, ys):
"""Helper function."""
if x <= xs[0]:
return ys[0]
if x >= xs[-1]:
return ys[-1]
i = bisect.bisect(xs, x)
frac = 1.0 * (x - xs[i-1]) / (xs[i] - xs[i-1])
y = ys[i-1] + frac * 1.0 * (ys[i] - ys[i-1])
return y