-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathenv.py
53 lines (45 loc) · 1.48 KB
/
env.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
"""
-------------------------------------------------------------------------
IMPALA_proto -
random_env.py
!!TODO: add file description here!!
created: 2018/03/09 in PyCharm
(c) 2017 Sven - ducandu GmbH
-------------------------------------------------------------------------
"""
class Env(object):
"""
Simple 3-state env with reversed 2nd state from Barto and Sutton book draft 2017 Chapter 13 (policy gradient methods)
[0 1 2 G]
start state==0
actions: left, right (deterministic)
only in state==1, actions have reverse effect
observation does not include state
optimal policy would be stochastic (0.59 right, 0.41 left)
"""
def __init__(self):
self.num_actions = 2 # 0=left and 1=right
self.state = 0 # the current state
def execute(self, action):
reward = -1
is_terminal = False
if self.state != 1:
if action == 0:
self.state -= 1
if self.state < 0:
self.state = 0
else:
self.state += 1
if self.state == 3:
reward = 1
is_terminal = True
# the "crazy" state
elif self.state == 1:
if action == 1:
self.state = 0
else:
self.state = 2
# return only reward, is-terminal (no state observation; we are blind)
return reward, is_terminal
def reset(self):
self.state = 0