-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_features.py
127 lines (112 loc) · 4.71 KB
/
extract_features.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
'''
implement the feature extractions for light CNN
@author: Alfred Xiang Wu
@date: 2017.07.04
'''
from __future__ import print_function
import argparse
import os
import shutil
import time
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.optim
import torch.utils.data
import torch.nn.functional as F
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import numpy as np
import cv2
from light_cnn import LightCNN_9Layers, LightCNN_29Layers, LightCNN_29Layers_v2
from load_imglist import ImageList
parser = argparse.ArgumentParser(description='PyTorch ImageNet Feature Extracting')
parser.add_argument('--arch', '-a', metavar='ARCH', default='LightCNN')
parser.add_argument('--cuda', '-c', default=True)
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('--model', default='', type=str, metavar='Model',
help='model type: LightCNN-9, LightCNN-29')
parser.add_argument('--root_path', default='', type=str, metavar='PATH',
help='root path of face images (default: none).')
parser.add_argument('--img_list', default='', type=str, metavar='PATH',
help='list of face images for feature extraction (default: none).')
parser.add_argument('--save_path', default='', type=str, metavar='PATH',
help='save root path for features of face images.')
parser.add_argument('--num_classes', default=79077, type=int,
metavar='N', help='mini-batch size (default: 79077)')
def main():
global args
args = parser.parse_args()
if args.model == 'LightCNN-9':
model = LightCNN_9Layers(num_classes=args.num_classes)
elif args.model == 'LightCNN-29':
model = LightCNN_29Layers(num_classes=args.num_classes)
elif args.model == 'LightCNN-29v2':
model = LightCNN_29Layers_v2(num_classes=args.num_classes)
else:
print('Error model type\n')
model.eval()
if args.cuda:
model = torch.nn.DataParallel(model).cuda()
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
# for error DataParallel
# restore_dict = {k[7:]: v for k, v in checkpoint['state_dict'].items()}
state_dict = checkpoint['state_dict']
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
if 'module' not in k:
k = 'module.' + k
else:
k = k.replace('features.module.', 'module.features.')
new_state_dict[k] = v
model.load_state_dict(new_state_dict)
else:
print("=> no checkpoint found at '{}'".format(args.resume))
img_list = read_list(args.img_list)
transform = transforms.Compose([transforms.ToTensor()])
count = 0
input = torch.zeros(1, 1, 128, 128)
y_true = []
with torch.no_grad():
for img_name in img_list:
count = count + 1
img = cv2.imread(os.path.join(args.root_path, img_name), cv2.IMREAD_GRAYSCALE)
img = cv2.resize(img, (128,128))
img = np.reshape(img, (128, 128, 1))
img = transform(img)
input[0,:,:,:] = img
start = time.time()
## if args.cuda:
## input = input.cuda()
input_var = torch.autograd.Variable(input, volatile=True)
_, features = model(input_var)
end = time.time() - start
y_true.append(features)
print("{}({}/{}). Time: {}".format(os.path.join(args.root_path, img_name), count, len(img_list), end))
## save_feature(args.save_path, img_name, features.data.cpu().numpy()[0])
def read_list(list_path):
img_list = []
with open(list_path, 'r') as f:
for line in f.readlines()[0:]:
img_path = line.strip().split()
img_list.append(img_path[0])
print('There are {} images..'.format(len(img_list)))
return img_list
def save_feature(save_path, img_name, features):
img_path = os.path.join(save_path, img_name)
img_dir = os.path.dirname(img_path) + '/';
if not os.path.exists(img_dir):
os.makedirs(img_dir)
fname = os.path.splitext(img_path)[0]
fname = fname + '.feat'
fid = open(fname, 'wb')
fid.write(features)
fid.close()
if __name__ == '__main__':
main()