Skip to content

Latest commit

 

History

History
117 lines (89 loc) · 4.71 KB

NUSC.md

File metadata and controls

117 lines (89 loc) · 4.71 KB

Getting Started with CenterPoint on nuScenes

Modified from det3d's original document.

Prepare data

Download data and organise as follows

# For nuScenes Dataset         
└── NUSCENES_DATASET_ROOT
       ├── samples       <-- key frames
       ├── sweeps        <-- frames without annotation
       ├── maps          <-- unused
       ├── v1.0-trainval <-- metadata

Create a symlink to the dataset root

mkdir data && cd data
ln -s DATA_ROOT 
mv DATA_ROOT nuScenes # rename to nuScenes

Remember to change the DATA_ROOT to the actual path in your system.

Create data

Data creation should be under the gpu environment.

# nuScenes
python tools/create_data.py nuscenes_data_prep --root_path=NUSCENES_TRAINVAL_DATASET_ROOT --version="v1.0-trainval" --nsweeps=10

In the end, the data and info files should be organized as follows

# For nuScenes Dataset 
└── CenterPoint
       └── data    
              └── nuScenes 
                     ├── samples       <-- key frames
                     ├── sweeps        <-- frames without annotation
                     ├── maps          <-- unused
                     |── v1.0-trainval <-- metadata and annotations
                     |── infos_train_10sweeps_withvelo_filter_True.pkl <-- train annotations
                     |── infos_val_10sweeps_withvelo_filter_True.pkl <-- val annotations
                     |── dbinfos_train_10sweeps_withvelo.pkl <-- GT database info files
                     |── gt_database_10sweeps_withvelo <-- GT database 

Train & Evaluate in Command Line

Now we only support training and evaluation with gpu. Cpu only mode is not supported.

Use the following command to start a distributed training using 4 GPUs. The models and logs will be saved to work_dirs/CONFIG_NAME

python -m torch.distributed.launch --nproc_per_node=4 ./tools/train.py CONFIG_PATH

For distributed testing with 4 gpus,

python -m torch.distributed.launch --nproc_per_node=4 ./tools/dist_test.py CONFIG_PATH --work_dir work_dirs/CONFIG_NAME --checkpoint work_dirs/CONFIG_NAME/latest.pth 

For testing with one gpu and see the inference time,

python ./tools/dist_test.py CONFIG_PATH --work_dir work_dirs/CONFIG_NAME --checkpoint work_dirs/CONFIG_NAME/latest.pth --speed_test 

The pretrained models and configurations are in MODEL ZOO.

Tracking

You can find the detection files are in the MODEL ZOO. After downloading the detection files, you can simply run

# val set 
python tools/nusc_tracking/pub_test.py --work_dir WORK_DIR_PATH  --checkpoint DETECTION_PATH  

# test set 
python tools/nusc_tracking/pub_test.py --work_dir WORK_DIR_PATH  --checkpoint DETECTION_PATH  --version v1.0-test  --root data/nuScenes/v1.0-test    

Test Set

Organize your dataset as follows

# For nuScenes Dataset 
└── CenterPoint
       └── data    
              └── nuScenes 
                     ├── samples       <-- key frames
                     ├── sweeps        <-- frames without annotation
                     ├── maps          <-- unused
                     |── v1.0-trainval <-- metadata and annotations
                     |── infos_train_10sweeps_withvelo_filter_True.pkl <-- train annotations
                     |── infos_val_10sweeps_withvelo_filter_True.pkl <-- val annotations
                     |── dbinfos_train_10sweeps_withvelo.pkl <-- GT database info files
                     |── gt_database_10sweeps_withvelo <-- GT database 
                     └── v1.0-test <-- main test folder 
                            ├── samples       <-- key frames
                            ├── sweeps        <-- frames without annotation
                            ├── maps          <-- unused
                            |── v1.0-test <-- metadata and annotations
                            |── infos_test_10sweeps_withvelo.pkl <-- test info

Download the centerpoint_voxel_1440_dcn_flip here, save it into work_dirs/nusc_0075_dcn_flip_track, then run the following commands in the main folder to get detection prediction

python tools/dist_test.py configs/nusc/voxelnet/nusc_centerpoint_voxelnet_0075voxel_dcn_flip.py --work_dir work_dirs/nusc_centerpoint_voxelnet_dcn_0075voxel_flip_testset  --checkpoint work_dirs/nusc_0075_dcn_flip_track/voxelnet_converted.pth  --testset --speed_test