-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathconfig.py
164 lines (142 loc) · 6.72 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
"""
Copyright (c) 2019 Emil Lynegaard
Distributed under the MIT software license, see the
accompanying LICENSE.md or https://opensource.org/licenses/MIT
Store full Network + Inference configuration,
supporting processing of unknown args from argparse module
"""
import yaml
class Config:
"""Configuration and hyper-parameters of a Seq2Seq model"""
limit: int = float("inf") # limit dataset size
epochs: int = 30 # maximum epochs
iterations: int = float("inf") # limit iterations (training batches)
batch_size: int = 16
train_file: str = "data/cnndm_abisee_train.tsv"
valid_file: str = "data/cnndm_abisee_dev.tsv"
vocab_file: str = "data/cnndm_abisee.vocab"
output_file: str = "log/summarization.tar"
save_every: int = 5000 # save checkpoint this often
early_stopping: bool = False
patience: int = float("inf") # patience for early stopping
validator: str = "rouge" # rouge | loss
validate_every: int = 0 # validate every X iterations (0 = every epoch)
validation_size: int = 13368 # instances to sample for rouge validation
# Data filtering.
## Instances outside these intervals are ignored if enabled.
filter_instances: bool = False
min_article_length: int = 50
max_article_length: int = 4000
min_summary_length: int = 5
max_summary_length: int = 200
min_compression_ratio: float = 2.0
# Evaluation parameters (for beam search)
beam_size: int = 4
min_decode_steps: int = 35
max_decode_steps: int = 120 # limit generated summaries to this many
## Length normalization during beam search
length_normalize: str = "avg" # avg | wu
length_normalize_alpha: float = 2.2 # alpha for wu length penalty
## Coverage penalty during Beam Search from Wu et al. 2016
coverage_penalty: bool = False
coverage_penalty_beta: float = 5.0
## Block ngram repetition of size X - 0 is no blocking
block_ngram_repeat: int = 0
## Block the model from producing <UNK> during beam search
block_unknown: bool = False
## Prevent the model from repeating the same word twice in a row
block_repeat: bool = False
# Hyper-parameters
## Optimizer (fine tuning of specific optimizer not supported through config.py)
optimizer: str = "adam" # adam | adadelta | adam | adagrad | adamax | rmsprop
adagrad_init_acc: float = 0.1 # adagrad specific (for See et al. 2017)
learning_rate: float = 0.001
learning_rate_decay: float = 1.0 # 1.0 is no decay, 0.5 is halving
learning_rate_patience: int = 0 # how many receding validations before decay lr
max_grad_norm: float = 2.0 # gradient clipping
## Normally we compute masked 2d loss, over an entire batch.
## This intuitively gives longer sequence a larger impact on the loss.
## With size_average=True, we first average the loss for each instance, prior
## to averaging for the batch, intuitively giving each instance equal say despite size.
size_average: bool = False # Size average loss for each instance in batch if True
# Model
rnn_cell: str = "gru" # gru | lstm
embed_file: str = None # initialize with pretrained weights from w2v file
vocab_size: int = 50000
truncate_article: int = 400 # truncate articles during training
truncate_summary: int = 100 # truncate summaries during training
embed_size: int = 128
hidden_size: int = 256
attn_feature_size: int = 512 # 2xhidden_size in See et al. (2017)
encoder_layers: int = 1
decoder_layers: int = 1
## Dropout configuration
embedding_dropout: float = 0.0 # dropout for embeddings
output_dropout: float = 0.0 # dropout before prediction layer
encoder_dropout: float = 0.0 # only if encoder_layers > 1
decoder_dropout: float = 0.0 # only if decoder_layers > 1
## attn_model:
## bahdanau | dot | scaled_dot | dot_coverage | general |
## general_coverage | bilinear_coverage | bilinear
attn_model: str = "bahdanau"
pointer: bool = True # true if allow pointing, otherwise false
coverage: bool = True # penalize repeated attention, and make attn coverage aware
coverage_loss_weight: float = 1.0 # reweigh coverage loss $(\lambda)$
# reduce coverage loss weight every epoch with decreasing validation (scheduled $(\lambda)$
coverage_loss_weight_decay: float = 1.0
coverage_func: str = "sum" # sum | max - note that we have only ever used sum
# non-linear between last output layers (None | tanh | relu | sigmoid)
output_activation: str = None
## Unknown management
penalize_unknown: bool = False # If `True`, UNK probabilities are added to total loss
sample_when_unknown: bool = False # If `True` we never feed UNK, and use prev. pred instead
ignore_unknown_loss: bool = False # If `True` don't let UNKs in target contribute to total loss
def _set_param(self, param, value):
assert param in self.__annotations__, "Unknown argument: {}".format(param)
old = getattr(self, param)
setattr(self, param, value)
print("Hyper-parameter %s = %s (was %s)" % (param, value, old))
def as_dict(self):
"""Utility to get a `Config` instance as dictionary"""
cfg = {}
for a in self.__annotations__:
cfg[a] = getattr(self, a)
return cfg
def load(self, file):
"""
Update the config from a yaml file with parameters
:param file: A yaml file with corresponding attributes
"""
print("Updating cfg from %s..." % file)
with open(file, "r") as f:
loaded = yaml.safe_load(f)
for k, v in loaded.items():
self._set_param(k, v)
def update(self, args):
"""
Update configuration by a list of command line arguments.
Supports flags, and both (=| ) as key value delimiter.
"""
# Handle arguments given in format key=value
args = [i for arg in args for i in arg.split("=")]
# Handle case of flag given as last argument
if args and args[-1].startswith("--"):
args.append("true")
normalized = []
ptr = 0
while ptr < len(args):
assert args[ptr].startswith("--")
arg, nxt = args[ptr][2:], args[ptr + 1]
assert hasattr(self, arg), "Unknown argument: {}".format(arg)
typ = self.__annotations__[arg]
if nxt.startswith("--"):
assert typ == bool, "Only booleans can be given in flag format"
normalized.append((arg, True))
ptr += 1
continue
else:
val = nxt.lower() == "true" if typ == bool else typ(nxt)
normalized.append((arg, val))
ptr += 2
for k, v in normalized:
self._set_param(k, v)