-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtrain.py
268 lines (228 loc) · 10.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
import json
import shutil
import os
import pickle
from callback import MultiClassAUROC, MultiGPUModelCheckpoint
from configparser import ConfigParser
import generator
import keras.backend as K
from keras.callbacks import ModelCheckpoint, TensorBoard, ReduceLROnPlateau
from keras.optimizers import Adam
from keras.utils import multi_gpu_model
from models import modelwrap
import tensorflow as tf
import utility
# hackery
# this is typically handled using environment variables on host
# configuration; not by scripts
# os.environ["CUDA_VISIBLE_DEVICES"]="1"
def main():
# Instantiate config parser
# as long as a configuration file is in the local directory of this training code
# it will be utilized by the training script
# TODO : Add a README for the configuration file used to configure this training cycle
config_file = "./sample_config.ini"
cp = ConfigParser()
cp.read(config_file)
# set a bunch of default config
output_directory = cp["DEFAULT"].get("output_directory")
image_source_directory = cp["DEFAULT"].get("image_source_directory")
# TODO tie in base model name for model verioning for SavedModels
base_model_name = cp["DEFAULT"].get("base_model_name")
# Class names are passed in as array within the configuration script
class_names = cp["DEFAULT"].get("class_names").split(",")
model_version = cp["DEFAULT"].get("model_version")
tensorboard_log_dir = cp["DEFAULT"].get("tensorboard_log_dir")
# training configuration
# See sample_config.ini for explanation of all of the parameters
use_base_model_weights = cp["TRAIN"].getboolean("use_base_model_weights")
use_trained_model_weights = cp["TRAIN"].getboolean("use_trained_model_weights")
use_best_weights = cp["TRAIN"].getboolean("use_best_weights")
output_weights_name = cp["TRAIN"].get("output_weights_name")
epochs = cp["TRAIN"].getint("epochs")
batch_size = cp["TRAIN"].getint("batch_size")
initial_learning_rate = cp["TRAIN"].getfloat("initial_learning_rate")
generator_workers = cp["TRAIN"].getint("generator_workers")
image_dimension = cp["TRAIN"].getint("image_dimension")
train_steps = cp["TRAIN"].get("train_steps")
patience_reduce_lr = cp["TRAIN"].getint("patience_reduce_lr")
min_learning_rate = cp["TRAIN"].getfloat("min_learning_rate")
validation_steps = cp["TRAIN"].get("validation_steps")
positive_weights_multiply = cp["TRAIN"].getfloat("positive_weights_multiply")
dataset_csv_dir = cp["TRAIN"].get("dataset_csv_dir")
if use_trained_model_weights:
print("<<< Using pretrained model weights! >>>")
training_stats_file = os.path.join(output_directory, ".training_stats.json")
if os.path.isfile(training_stats_file):
training_stats = json.load(open(training_stats_file))
else:
training_stats = {}
else:
# start over again
training_stats = {}
show_model_summary = cp["TRAIN"].getboolean("show_model_summary")
# end configuration parser
utility.check_create_output_dir(output_directory)
utility.create_tensorboard_log_dir(tensorboard_log_dir)
try:
utility.backup_config_file(output_directory, config_file)
datasets = ["train", "validation", "test"]
for dataset in datasets:
shutil.copy(os.path.join(dataset_csv_dir, f"{dataset}.csv"), output_directory)
train_counts, train_pos_counts = utility.get_sample_counts(output_directory, "train", class_names)
validation_counts, _ = utility.get_sample_counts(output_directory, "validation", class_names)
# compute steps
# train steps var defined in config ini file
# if set to standard auto, normalize train_steps
# wrt batch_size, otherwise take user input
if train_steps == "auto":
train_steps = int(train_counts / batch_size)
else:
try:
train_steps = int(train_steps)
except:
raise ValueError(f"""
train_steps : {train_steps} is invalid,
please use 'auto' or specify an integer.
""")
print(f" <<< train_steps : {train_steps} >>>")
if validation_steps == "auto":
validation_steps = int(validation_counts / batch_size)
else:
try:
validation_steps = int(validation_steps)
except:
raise ValueError(f"""
validation_steps : {validation_steps} is invalid,
please use 'auto' or specify an integer.
""")
print(f" <<< validation_steps : {validation_steps} >>>")
# class weights
class_weights = utility.get_class_weights(
train_counts,
train_pos_counts,
multiply=positive_weights_multiply,
)
print(f"class_weights : {class_weights}")
print(" <<< Loading Model >>>")
if use_trained_model_weights:
if use_best_weights:
model_weights_file = os.path.join(output_directory, f"best_{output_weights_name}")
else:
model_weights_file = os.path.join(output_directory, output_weights_name)
else:
model_weights_file = None
model_factory = modelwrap.Models()
model = model_factory.get_model(
class_names=class_names,
use_base_weights=use_base_model_weights,
weights_path=model_weights_file,
input_shape=(image_dimension,image_dimension,3)
)
if show_model_summary:
print(model.summary())
print(" <<< Creating Image Generators >>> ")
train_sequence = generator.AugmentedImageSequence(
dataset_csv_file=os.path.join(output_directory, "train.csv"),
class_names=class_names,
source_image_dir=image_source_directory,
batch_size=batch_size,
target_size=(image_dimension, image_dimension),
augmenter=utility.augmenter(),
steps=train_steps,
)
validation_sequence = generator.AugmentedImageSequence(
dataset_csv_file=os.path.join(output_directory, "validation.csv"),
class_names=class_names,
source_image_dir=image_source_directory,
batch_size=batch_size,
target_size=(image_dimension, image_dimension),
augmenter=utility.augmenter(),
steps=validation_steps,
shuffle_on_epoch_end=False,
)
output_weights_path = os.path.join(output_directory, output_weights_name)
print(f" <<< Set Output Weights Path to : {output_weights_path}")
# TODO implement multi-gpu support
model_train = model
checkpoint = ModelCheckpoint(
output_weights_path,
save_weights_only=True,
save_best_only=True,
verbose=1
)
print(" <<< Compile model and class weights >>>")
optimizer = Adam(lr=initial_learning_rate)
model_train.compile(
optimizer=optimizer, loss="binary_crossentropy"
)
auroc = MultiClassAUROC(
sequence=validation_sequence,
class_names=class_names,
weights_path=output_weights_path,
stats=training_stats,
workers=generator_workers,
)
# serving_checkpoint = ServingCheckpoint(
# output_directory=output_directory,
# model=model,
# model_version=model_version,
# )
callbacks =[
checkpoint,
TensorBoard(log_dir=os.path.join(tensorboard_log_dir), batch_size=batch_size),
ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=patience_reduce_lr,
verbose=1, mode="min", min_lr=min_learning_rate),
auroc
]
print(" <<< Starting Model Training >>> ")
history = model_train.fit_generator(
generator=train_sequence,
steps_per_epoch=train_steps,
epochs=epochs,
validation_data=validation_sequence,
validation_steps=validation_steps,
callbacks=callbacks,
class_weight=class_weights,
workers=generator_workers,
shuffle=False,
)
model_class_weights = tf.convert_to_tensor(model_train.layers[-1].get_weights()[0], tf.float32)
model_final_conv_layer = utility.get_output_layer(model_train, "bn")
tensor_info_input = tf.saved_model.utils.build_tensor_info(model_train.input)
tensor_info_output = tf.saved_model.utils.build_tensor_info(model_train.output)
tensor_info_class_weights = tf.saved_model.utils.build_tensor_info(model_class_weights)
tensor_info_final_conv_layer = tf.saved_model.utils.build_tensor_info(model_final_conv_layer.output)
# export model for serving
export_base_path = output_directory
export_path = os.path.join(
tf.compat.as_bytes(export_base_path),
tf.compat.as_bytes(model_version)
)
prediction_signature = (
tf.saved_model.signature_def_utils.build_signature_def(
inputs={'images': tensor_info_input},
outputs={'prediction': tensor_info_output, 'class_weights': tensor_info_class_weights, 'final_conv_layer': tensor_info_final_conv_layer},
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME
)
)
print(f" <<< Exporting Trained Model to {export_path} >>> ")
builder = tf.saved_model.builder.SavedModelBuilder(export_path)
with K.get_session() as sess:
builder.add_meta_graph_and_variables(
sess=sess,
tags=[tf.saved_model.tag_constants.SERVING],
signature_def_map={'predict': prediction_signature}
)
builder.save()
print(" <<< Export History >>>")
with open(os.path.join(output_directory, "history.pkl"), "wb") as f:
pickle.dump({
"history": history.history,
"auroc": auroc.aurocs,
}, f)
print(" <<< Export Complete! >>> ")
finally:
utility.delete_training_lock(output_directory)
if __name__ == "__main__":
main()