-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathqLlamaLayer.py
351 lines (302 loc) · 13.6 KB
/
qLlamaLayer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import torch
from torch import nn
from typing import List, Optional, Tuple
import math
from transformers.models.llama.modeling_llama import LlamaDecoderLayer, LlamaRMSNorm, LlamaAttention, LlamaMLP
from quant import Quantizer, fake_quantize_quarter_E5M2, fake_quantize_quarter_E4M3, quantize_tensor, quantize_tensor_channel_group
from qLinearLayer import QLinearLayer
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
"""Applies Rotary Position Embedding to the query and key tensors.
Args:
q (`torch.Tensor`): The query tensor.
k (`torch.Tensor`): The key tensor.
cos (`torch.Tensor`): The cosine part of the rotary embedding.
sin (`torch.Tensor`): The sine part of the rotary embedding.
position_ids (`torch.Tensor`, *optional*):
Deprecated and unused.
unsqueeze_dim (`int`, *optional*, defaults to 1):
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
Returns:
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
"""
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
q_embed = (q * cos) + (rotate_half(q) * sin)
k_embed = (k * cos) + (rotate_half(k) * sin)
return q_embed, k_embed
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
"""
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
if n_rep == 1:
return hidden_states
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
class QLlamaDecoderLayer(nn.Module):
def __init__(
self,
originalLayer: LlamaDecoderLayer,
args
):
super().__init__()
self.args = args
self.hidden_size = originalLayer.hidden_size
self.self_attn = QLlamaAttention(
originalLayer.self_attn,
args
)
self.mlp = QLlamaMLP(
originalLayer.mlp,
args
)
self.input_layernorm = QLlamaRMSNorm(
originalLayer.input_layernorm,
args
)
self.post_attention_layernorm = QLlamaRMSNorm(
originalLayer.post_attention_layernorm,
args
)
def to(self, *args, **kwargs):
super(QLlamaDecoderLayer, self).to(*args, **kwargs)
self.self_attn = self.self_attn.to(*args, **kwargs)
self.input_layernorm = self.input_layernorm.to(*args, **kwargs)
self.post_attention_layernorm = self.post_attention_layernorm.to(*args, **kwargs)
self.mlp = self.mlp.to(*args, **kwargs)
return self
@torch.no_grad()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: Optional[bool] = False,
use_cache: Optional[bool] = False,
cache_position: Optional[torch.LongTensor] = None,
padding_mask=None,
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
# Self Attention
hidden_states, self_attn_weights, present_key_value = self.self_attn(
hidden_states=hidden_states,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_value=past_key_value,
output_attentions=output_attentions,
use_cache=use_cache,
)
hidden_states = residual + hidden_states
# Fully Connected
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.mlp(hidden_states)
hidden_states = residual + hidden_states
outputs = (hidden_states,)
if output_attentions:
outputs += (self_attn_weights,)
if use_cache:
outputs += (present_key_value,)
return outputs
class QLlamaRMSNorm(nn.Module):
def __init__(
self,
originalNorm: LlamaRMSNorm,
args
):
super().__init__()
self.originalNorm = originalNorm
self.act_quant = Quantizer(args=args)
self.register_buffer("reorder_index", None)
self.args = args
@torch.no_grad()
def forward(self, hidden_states):
result = self.originalNorm(hidden_states)
if self.reorder_index is not None:
assert result.shape[result.dim()-1] == self.reorder_index.shape[0]
result = torch.index_select(result, result.dim()-1, self.reorder_index)
if self.args.abits < 16:
result = self.act_quant(result)
return result
def to(self, *args, **kwargs):
super(QLlamaRMSNorm, self).to(*args, **kwargs)
self.originalNorm = self.originalNorm.to(*args, **kwargs)
self.act_quant = self.act_quant.to(*args, **kwargs)
if self.reorder_index is not None:
self.reorder_index = self.reorder_index.to(*args, **kwargs)
return self
class QLlamaAttention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(
self,
originalAttn: LlamaAttention,
args
):
super().__init__()
self.abits = args.abits
self.q_kv_cache = args.kv_cache
self.config = originalAttn.config
self.hidden_size = originalAttn.hidden_size
self.num_heads = originalAttn.num_heads
self.head_dim = self.hidden_size // self.num_heads
self.num_key_value_heads = originalAttn.num_key_value_heads
self.num_key_value_groups = originalAttn.num_key_value_groups
self.max_position_embeddings = originalAttn.max_position_embeddings
self.rope_theta = originalAttn.rope_theta
if (self.head_dim * self.num_heads) != self.hidden_size:
raise ValueError(
f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
f" and `num_heads`: {self.num_heads})."
)
self.q_proj = QLinearLayer(
originalAttn.q_proj,
args
)
self.k_proj = QLinearLayer(
originalAttn.k_proj,
args
)
self.v_proj = QLinearLayer(
originalAttn.v_proj,
args
)
self.o_proj = QLinearLayer(
originalAttn.o_proj,
args
)
self.rotary_emb = originalAttn.rotary_emb
self.act_quant = Quantizer(args=args)
self.v_quant = Quantizer(args=args)
self.k_quant = Quantizer(args=args)
self.register_buffer("reorder_index", None)
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
def to(self, *args, **kwargs):
super(QLlamaAttention, self).to(*args, **kwargs)
self.q_proj = self.q_proj.to(*args, **kwargs)
self.k_proj = self.k_proj.to(*args, **kwargs)
self.v_proj = self.v_proj.to(*args, **kwargs)
self.o_proj = self.o_proj.to(*args, **kwargs)
self.rotary_emb = self.rotary_emb.to(*args, **kwargs)
self.act_quant = self.act_quant.to(*args, **kwargs)
self.v_quant = self.v_quant.to(*args, **kwargs)
self.k_quant = self.k_quant.to(*args, **kwargs)
if self.reorder_index is not None:
self.reorder_index = self.reorder_index.to(*args, **kwargs)
return self
@torch.no_grad()
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_value: Optional[Tuple[torch.Tensor]] = None,
output_attentions: bool = False,
use_cache: bool = False,
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
bsz, q_len, _ = hidden_states.size()
query_states = self.q_proj(hidden_states).view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
key_states = self.k_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
value_states = self.v_proj(hidden_states).view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
kv_seq_len = key_states.shape[-2]
if past_key_value is not None:
kv_seq_len += past_key_value[0].shape[-2]
# Fake quantize the key_states.
# Preserve the position embedding info by first quantize.
if self.q_kv_cache:
key_states = self.k_quant(key_states)
# cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
cos, sin = self.rotary_emb(value_states, position_ids)
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
# [bsz, nh, t, hd]
if past_key_value is not None:
# reuse k, v, self_attention
key_states = torch.cat([past_key_value[0], key_states], dim=2)
value_states = torch.cat([past_key_value[1], value_states], dim=2)
past_key_value = (key_states, value_states) if use_cache else None
key_states = repeat_kv(key_states, self.num_key_value_groups)
value_states = repeat_kv(value_states, self.num_key_value_groups)
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
raise ValueError(
f"Attention weights should be of size {(bsz * self.num_heads, q_len, kv_seq_len)}, but is"
f" {attn_weights.size()}"
)
if attention_mask is not None:
if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
raise ValueError(
f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
)
attn_weights = attn_weights + attention_mask
# upcast attention to fp32
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
# Fake quantize the value_states
if self.q_kv_cache:
value_states = self.v_quant(value_states)
attn_output = torch.matmul(attn_weights, value_states)
if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
raise ValueError(
f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
f" {attn_output.size()}"
)
attn_output = attn_output.transpose(1, 2).contiguous()
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
# Reorder the BMM output to feed into o.proj
if self.reorder_index is not None:
attn_output = torch.index_select(attn_output, 2, self.reorder_index)
# Quantize the attention output
attn_output = self.act_quant(attn_output)
attn_output = self.o_proj(attn_output)
if not output_attentions:
attn_weights = None
return attn_output, attn_weights, past_key_value
class QLlamaMLP(nn.Module):
def __init__(
self,
originalMLP: LlamaMLP,
args
):
super().__init__()
self.gate_proj = QLinearLayer(
originalMLP.gate_proj,
args
)
self.down_proj = QLinearLayer(
originalMLP.down_proj,
args
)
self.up_proj = QLinearLayer(
originalMLP.up_proj,
args
)
self.act_fn = originalMLP.act_fn
self.act_quant = Quantizer(args=args)
# self.register_buffer("act_shifts", None)
def to(self, *args, **kwargs):
super(QLlamaMLP, self).to(*args, **kwargs)
self.gate_proj = self.gate_proj.to(*args, **kwargs)
self.down_proj = self.down_proj.to(*args, **kwargs)
self.up_proj = self.up_proj.to(*args, **kwargs)
self.act_quant = self.act_quant.to(*args, **kwargs)
return self
@torch.no_grad()
def forward(self, x):
# input X: [b, seq, dim]: quantized
tmpResult = self.act_fn(self.gate_proj(x)) * self.up_proj(x)
# Quantize the activations and feed into down_proj
tmpResult = self.act_quant(tmpResult)
return self.down_proj(tmpResult)