-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickSelect-explained.js
40 lines (33 loc) · 1.54 KB
/
quickSelect-explained.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
// O(n) - since we only do the recursion on half the sub-arrays the time complexity is O(2n) which in Big O becomes O(n)
// Quick Select is a variation of Quick Sort that uses a Binary Search approach. It can be used to find the kth smallest or largest element in an array.
// TIP: The term "kth" is a mathematical notation used to represent an arbitrary element or position in a sequence or collection.
// "k" is the index of the element in the sorted array. For example, the 2nd smallest element is the element at index 1 in the sorted array.
function quickSelect(array, k) {
if (array.length === 1) return array[0]
// Pick a random value from the array to be the pivot
let pivotIndex = Math.floor(Math.random() * array.length)
let pivot = array[pivotIndex]
let left = []
let right = []
// Partition into left and right sub-arrays
for (let i = 0; i < array.length; i++) {
if (i === pivotIndex) continue // skip pivot element to prevent infinite recursion
if (array[i] < pivot) {
left.push(array[i])
} else {
right.push(array[i])
}
}
// Recurse on left or right subarray depending on value of k
if (k === left.length) {
return pivot
} else if (k < left.length) {
return quickSelect(left, k)
} else {
return quickSelect(right, k - left.length - 1)
}
}
// Find the 2nd smallest element (1 index is the second element)
console.log(quickSelect([100, 20, 40, 30, 50, 10], 1)) // 20
// Find the 4th smallest element (3 index is the fourth element)
console.log(quickSelect([100, 20, 40, 30, 50, 10], 3)) // 40