-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathpico_math.h
1143 lines (941 loc) · 28 KB
/
pico_math.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
@file pico_math.h
@brief A 2D math library for games
----------------------------------------------------------------------------
Licensing information at end of header
----------------------------------------------------------------------------
Notice:
---------
This library has undergone a major revision with release 2.0. Although the
functionality is more or less the same, the naming conventions differ
substantially. To summarize, 'pm_v2', 'pm_t2', and 'pm_b2' have all been
replaced by 'pv2', 'pt2', and 'pb2'. These changes affect both type
defintions as well as function names. With scalar functions 'pm_' has been
replaced by 'pf_', for example 'pm_equal' is now 'pf_equal'. The type
'pm_float' has been replaced by 'pfloat'. The purpose of these changes is
largely to make type and function names more specific and compact. The old
(and no longer maintained) version can be found at
https://github.com/empyreanx/pico_headers_deprecated
Features:
---------
- Written in C99
- Single header library for easy build system integration
- Arithmetic for 2D vectors, transforms, and AABBs
- Functions for creating and manipulating affine transformations
- Strikes a solid balance between simplicity and performance
- Extensive test suite
- Permissive license (zlib or public domain)
Summary:
--------
This library provides functions that act on three 2D types: vectors (pv2),
transforms (pt2), and axis-align bounding boxes (pb2). The library also
provides some scalar functions as well as a random number generator.
This library aims to strike a balance between performance and simplicity.
Most functions return by value. All vectors are passed by value. Otherwise,
transforms and AABBs are passed by pointer. There is no dynamic memory
allocation.
Vector functions comprise basic vector creation and manipulation, as well
as computing lengths, dot products, projections, and more.
Transformation functions include functions for computing multiplications,
determinants, inverses, as well as extracting and inserting transformation
parameters. There are also functions for applying rotations, scaling, and
translations to a given transform. The provided functions are sufficient for
implementing a scene graph.
This library provides linear interpolation for transforms, vectors, and
scalars. Interpolating transforms can be used in a variety of contexts, for
example, interpolated rendering when using a fixed timestep, or smoothing
when performing networked physics.
Bounding box functions provide tests for intersection of AABBs and
determnining if a point is contained within a given AABB. There are
functions for computing unions and intersections of AABBs as well as
for computing the minimum enclosing AABB for a set of points.
The random number generator uses the xoshiro128** algorithm, which is
substantially better than `rand()` in terms of the quality of its output
without sacrificing too much performance.
Please see the unit tests for some concrete examples.
Usage:
------
To use this library in your project, add the following
> #define PICO_MATH_IMPLEMENTATION
> #include "pico_ml.h"
to a source file (once), then simply include the header normally.
*/
#ifndef PICO_MATH_H
#define PICO_MATH_H
#include <float.h> // FLT_MIN/MAX, DBL_MIN/MAX
#include <math.h> // sqrt(f), cos(f), sin(f), atan2(f)...
#include <stdbool.h> // bool, true, false
#include <stdint.h> // uint32_t
#ifdef __cplusplus
extern "C" {
#endif
// Common
#if defined(_MSC_VER)
#define PM_INLINE __forceinline
#elif defined(__GNUC__) || defined(__clang__)
#define PM_INLINE static inline __attribute((always_inline))
#else
#define PM_INLINE
#endif
/*==============================================================================
* Types, constants, and function aliases
*============================================================================*/
#ifdef PICO_MATH_DOUBLE
/// @brief A double precision floating point number
typedef double pfloat;
#define PM_EPSILON 1e-7
#define PM_PI 3.14159265358979323846264338327950288
#define PM_PI2 (2.0 * PM_PI)
#define PM_E 2.71828182845904523536028747135266250
#define PM_FLOAT_MIN DBL_MIN
#define PM_FLOAT_MAX DBL_MAX
#define pf_sqrt sqrt
#define pf_cos cos
#define pf_sin sin
#define pf_acos acos
#define pf_asin asin
#define pf_atan2 atan2
#define pf_abs fabs
#define pf_fmod fmod
#define pf_exp exp
#define pf_pow pow
#define pf_floor floor
#define pf_ceil ceil
#define pf_log2 log2
#define pf_max fmax
#define pf_min fmin
#else
/// @brief A single precision floating point number
typedef float pfloat;
#define PM_EPSILON 1e-5f
#define PM_PI 3.14159265359f
#define PM_PI2 (2.0f * PM_PI)
#define PM_E 2.71828182845f
#define PM_FLOAT_MIN FLT_MIN
#define PM_FLOAT_MAX FLT_MAX
#define pf_sqrt sqrtf
#define pf_cos cosf
#define pf_sin sinf
#define pf_acos acosf
#define pf_asin asinf
#define pf_atan2 atan2f
#define pf_abs fabsf
#define pf_fmod fmodf
#define pf_exp expf
#define pf_pow powf
#define pf_floor floorf
#define pf_ceil ceilf
#define pf_log2 log2f
#define pf_max fmaxf
#define pf_min fminf
#endif
/*==============================================================================
* Data structures
*============================================================================*/
/**
* @brief A 2D vector
*/
typedef struct
{
pfloat x, y;
} pv2;
/**
* @brief A 2D transform
*/
typedef struct
{
pfloat t00, t10, t01, t11, tx, ty;
} pt2;
/**
* @brief A 2D axis-aligned-bounding-box (AABB)
*/
typedef struct
{
pv2 min, max;
} pb2;
/*==============================================================================
* Scalar functions and macros
*============================================================================*/
/**
* @brief Clamps the value to the given range
*/
PM_INLINE pfloat pf_clamp(pfloat val, pfloat min, pfloat max)
{
return ((val < min) ? min : ((val > max) ? max : val));
}
/**
* @brief Computes the sign of the number
*
* @returns:
* -1 if `val` is less than zero
* 0 if `val` is equal to zero
* 1 if `val` is greater than zero
*/
PM_INLINE pfloat pf_sign(pfloat val)
{
return ((0 == val) ? 0.0f : ((val > 0.0f) ? 1.0f : -1.0f));
}
/**
* @brief Returns `true` if the values are within epsilon of one another
*/
PM_INLINE bool pf_equal(pfloat c1, pfloat c2)
{
return pf_abs(c1 - c2) < PM_EPSILON;
}
/**
* @brief Linearly interpolates the two values
* @param a One endpoint
* @param b Another endpoint
* @param alpha A number in [0, 1] that specifies the position between the
* endpoints
*/
PM_INLINE pfloat pf_lerp(pfloat a, pfloat b, pfloat alpha)
{
return a + (b - a) * alpha;
}
/**
* @brief Linearly interpolates between two angles
*
* @param angle1 The first endpoint
* @param angle2 The second endpoint
* @param alpha The normalized distance between angle1 and angle2
*/
pfloat pf_lerp_angle(pfloat angle1, pfloat angle2, pfloat alpha);
/**
* @brief Clamps the angle to be in [0, 2 * PI]
*/
PM_INLINE pfloat pf_normalize_angle(pfloat angle)
{
while (angle >= PM_PI2)
angle -= PM_PI2;
while (angle < 0.0f)
angle += PM_PI2;
return angle;
}
/*==============================================================================
* Vectors
*============================================================================*/
/**
* @brief Constructs a vector
*/
#define pv2_make(x, y) ((const pv2){ x, y })
/**
* @brief Returns true if the vectors are equal (within epsilon)
*/
PM_INLINE bool pv2_equal(pv2 v1, pv2 v2)
{
return pf_equal(v1.x, v2.x) &&
pf_equal(v1.y, v2.y);
}
/**
* @brief Adds two vectors
* @param v1 First vector
* @param v2 Second vector
*/
PM_INLINE pv2 pv2_add(pv2 v1, pv2 v2)
{
return pv2_make(v1.x + v2.x, v1.y + v2.y);
}
/**
* @brief Subtracts two vectors
* @param v1 First vector
* @param v2 Second vector
*/
PM_INLINE pv2 pv2_sub(pv2 v1, pv2 v2)
{
return pv2_make(v1.x - v2.x, v1.y - v2.y);
}
/**
* @brief Scales a vector
* @param v Vector to scale
* @param c The scale factor
*/
PM_INLINE pv2 pv2_scale(pv2 v, pfloat c)
{
return pv2_make(v.x * c, v.y * c);
}
/**
* @brief Dot product
*/
PM_INLINE pfloat pv2_dot(pv2 v1, pv2 v2)
{
return v1.x * v2.x + v1.y * v2.y;
}
/**
* @brief Returns the square of the length of the vector
*/
PM_INLINE pfloat pv2_len2(pv2 v)
{
return pv2_dot(v, v);
}
/**
* @brief Returns the length of the vector
*/
PM_INLINE pfloat pv2_len(pv2 v)
{
return pf_sqrt(pv2_len2(v));
}
/**
* @brief Normalizes a vector (sets its length to one)
* @param v The vector to normalize
* @returns The normalized vector
*/
PM_INLINE pv2 pv2_normalize(pv2 v)
{
pfloat c = pv2_len(v);
if (c < PM_EPSILON)
return pv2_make(0.0f, 0.0f);
else
return pv2_scale(v, 1.0f / c);
}
/**
* @brief Negates a vector (scales it by -1.0)
* @param v The vector to negate
* @returns The negated vecotor
*/
PM_INLINE pv2 pv2_reflect(pv2 v)
{
return pv2_scale(v, -1.0f);
}
/**
* @brief Construct a vector that is perpendicular to the specified vector
* @param v The vector to be made perpendicular
* @returns The perpendicular vector
*/
PM_INLINE pv2 pv2_perp(pv2 v)
{
return pv2_make(-v.y, v.x);
}
/**
* @brief A 2D analog of the 3D cross product
*/
PM_INLINE pfloat pv2_cross(pv2 v1, pv2 v2)
{
pv2 perp = pv2_perp(v1);
return pv2_dot(perp, v2);
}
/**
* @brief Returns the angle the vector with respect to the current basis
*/
PM_INLINE pfloat pv2_angle(pv2 v)
{
return pf_atan2(v.y, v.x);
}
/**
* @brief Projects a vector onto another
* @param v1 The vector to be projected
* @param v2 The vector to project onto
* @returns The projection of v1 onto v2
*/
PM_INLINE pv2 pv2_proj(pv2 v1, pv2 v2)
{
pfloat d = pv2_dot(v1, v2) / pv2_dot(v2, v2);
return pv2_scale(v2, d);
}
/**
* @brief Returns the distance between the two vectors
*/
PM_INLINE pfloat pv2_dist(pv2 v1, pv2 v2)
{
pv2 v = pv2_sub(v1, v2);
return pv2_len(v);
}
/**
* @brief Linearly interpolates between two vectors
* @param v1 The first endpoint
* @param v2 The second endpoint
* @param alpha The normalized distance between v1 and v2
*/
PM_INLINE pv2 pv2_lerp(pv2 v1, pv2 v2, pfloat alpha)
{
pv2 out;
out.x = pf_lerp(v1.x, v2.x, alpha);
out.y = pf_lerp(v1.y, v2.y, alpha);
return out;
}
/**
* @brief Returns the zero vector
*/
#define pv2_zero() (pv2_make(0.0f, 0.0f))
/**
* @brief Contructs a vector in polar coordinates
*/
PM_INLINE pv2 pv2_polar(pfloat angle, pfloat len)
{
return pv2_make(len * pf_cos(angle), len * pf_sin(angle));
}
/**
* @brief Computes the component-wise minimum of two vectors
*/
PM_INLINE pv2 pv2_min(pv2 v1, pv2 v2)
{
return pv2_make(pf_min(v1.x, v2.x), pf_min(v1.y, v2.y));
}
/**
* @brief Computes the component-wise maximum of two vectors
*/
PM_INLINE pv2 pv2_max(pv2 v1, pv2 v2)
{
return pv2_make(pf_max(v1.x, v2.x), pf_max(v1.y, v2.y));
}
/**
* @brief Computes the component-wise floor of the specified vector
*/
PM_INLINE pv2 pv2_floor(pv2 v)
{
return pv2_make(pf_floor(v.x), pf_floor(v.y));
}
/**
* @brief Computes the component-wise ceiling of the specified vector
*/
PM_INLINE pv2 pv2_ceil(pv2 v)
{
return pv2_make(pf_ceil(v.x), pf_ceil(v.y));
}
/*==============================================================================
* 2D Affine Transforms
*============================================================================*/
/**
* @brief Constructs a 2D transform
*/
#define pt2_make(t00, t01, tx, t10, t11, ty) ((const pt2){ t00, t10, t01, t11, tx, ty })
/**
* @brief Return the identity transform
*/
PM_INLINE pt2 pt2_identity(void)
{
return pt2_make(1.0f, 0.0f, 0.0f,
0.0f, 1.0f, 0.0f);
}
/**
* @brief Returns true if the transforms are equal (within epsilon)
*/
bool pt2_equal(const pt2* t1, const pt2* t2);
/**
* @brief Gets the translation components of the transform
* @param t Pointer to the transform
*/
PM_INLINE pv2 pt2_get_pos(const pt2* t)
{
return pv2_make(t->tx, t->ty);
}
/**
* @brief Sets the translation components of the transform
* @param t Pointer to the transform
* @param pos The position vector
*/
PM_INLINE void pt2_set_pos(pt2* t, pv2 pos)
{
t->tx = pos.x;
t->ty = pos.y;
}
/**
* @brief Gets the angle of rotation of the transform
*/
PM_INLINE pfloat pt2_get_angle(const pt2* t)
{
return pf_normalize_angle(pf_atan2(t->t10, t->t00));
}
/**
* @brief Sets the scale of the transform
*
* Scalings are now assumed to be pre-multiplied. This change was made because
* the common case is usually a tranlation to the origin, followed by scaling,
* then a rotation and finally, another translation.
*
* @param t The transform
* @param scale The vector containing scale factors in the x/y directions
*/
void pt2_set_scale(pt2* t, pv2 scale);
/**
* @brief Gets the scale of the transform
*
* Scalings are now assumed to be pre-multiplied. This change was made because
* the common case is usually a tranlation to the origin, followed by scaling,
* then a rotation and finally, another translation.
*
* @param t The transform
*/
pv2 pt2_get_scale(const pt2* t);
/**
* @brief Sets the angle of the transform
*/
void pt2_set_angle(pt2* t, pfloat angle);
/**
* @brief Transforms a vector
* @param t The transform
* @param v The vector to be transformed
*/
PM_INLINE pv2 pt2_map(const pt2* t, pv2 v)
{
pv2 out;
out.x = t->t00 * v.x + t->t01 * v.y + t->tx;
out.y = t->t10 * v.x + t->t11 * v.y + t->ty;
return out;
}
/**
* @brief Returns the determinant of the transform
*/
PM_INLINE pfloat pt2_det(const pt2* t)
{
return t->t00 * t->t11 - t->t01 * t->t10;
}
/**
* @brief Calculates the inverse of the transform
* @param t The transform to invert
*/
pt2 pt2_inv(const pt2* t);
/**
* @brief Composes two transformations
*/
pt2 pt2_mult(const pt2* t1, const pt2* t2);
/**
* @brief Linearly interpolates two transforms
*/
pt2 pt2_lerp(const pt2* t1, const pt2* t2, pfloat alpha);
/**
* @brief Constructs a scaling transform
* @param scale The scaling components
*/
PM_INLINE pt2 pt2_scaling(pv2 scale)
{
return pt2_make(scale.x, 0.0f, 0.0f,
0.0f, scale.y, 0.0f);
}
/**
* @brief Constructs a rotation transform
* @param angle The angle of rotation
*/
PM_INLINE pt2 pt2_rotation(pfloat angle)
{
pfloat c = pf_cos(angle);
pfloat s = pf_sin(angle);
return pt2_make(c, -s, 0.0f,
s, c, 0.0f);
}
/**
* @brief Constructs a translation transform
* @param pos The translation coordinates
*/
PM_INLINE pt2 pt2_translation(pv2 pos)
{
return pt2_make(1.0f, 0.0f, pos.x,
0.0f, 1.0f, pos.y);
}
/**
* @brief Scales a transform
* @param t The transform to scale
* @param scale The scaling parameters
*/
PM_INLINE void pt2_scale(pt2* t, pv2 scale)
{
pt2 scaling = pt2_scaling(scale);
*t = pt2_mult(&scaling, t);
}
/**
* @brief Applies a rotation to a transform
* @param t The transform to rotate
* @param angle The angle to rotate by
*/
PM_INLINE void pt2_rotate(pt2* t, pfloat angle)
{
pt2 rotation = pt2_rotation(angle);
*t = pt2_mult(&rotation, t);
}
/**
* @brief Applies a translation a transform
* @param t The transform to translate
* @param pos The translation components
*/
PM_INLINE void pt2_translate(pt2* t, pv2 pos)
{
pt2 translation = pt2_translation(pos);
*t = pt2_mult(&translation, t);
}
/*==============================================================================
* 2D Box (AABB)
*============================================================================*/
#define pb2_make_minmax(min, max) ((const pb2){ min, max })
/**
* @brief Constructs a 2D box (rectangle)
*/
#define pb2_make(x, y, w, h) ((const pb2){ { x, y }, { x + w, y + h } })
/**
* @brief Returns an AABB that has zero size and coordinates
*/
#define pb2_zero() (pb2_make(0.0f, 0.0f, 0.0f, 0.0f))
/**
* @brief Returns the position of an AABB
*/
PM_INLINE pv2 pb2_get_pos(const pb2* b)
{
return b->min;
}
/**
* @brief Returns the dimensions of an AABB
*/
PM_INLINE pv2 pb2_get_size(const pb2* b)
{
return pv2_sub(b->max, b->min);
}
/**
* @brief Sets the position of an AABB
* @param b The AABB
* @param pos The new position
*/
PM_INLINE void pb2_set_pos(pb2* b, pv2 pos)
{
pv2 size = pb2_get_size(b);
*b = pb2_make(pos.x, pos.y, size.x, size.y);
}
/**
* @brief Sets the dimensions of an AABB
* @param b The AABB
* @param size The new size
*/
PM_INLINE void pb2_set_size(pb2* b, pv2 size)
{
pv2 pos = pb2_get_pos(b);
*b = pb2_make(pos.x, pos.y, size.x, size.y);
}
/**
* @brief Returns `true` if the bounding boxes are equal (within epsilon)
*/
bool pb2_equal(const pb2* b1, const pb2* b2);
/**
* @brief Computes the union of `b1` and `b2
*/
pb2 pb2_combine(const pb2* b1, const pb2* b2);
/**
* @brief Computes the intersection of `b1` and `b2`
*/
pb2 pb2_overlap(const pb2* b1, const pb2* b2);
/**
* @brief Return `true` if the two bounding boxes intersect
*/
PM_INLINE bool pb2_overlaps(const pb2* b1, const pb2* b2)
{
return b1->max.x >= b2->min.x &&
b1->max.y >= b2->min.y &&
b2->max.x >= b1->min.x &&
b2->max.y >= b1->min.y;
}
/**
* @brief Returns `true` if the first box is contained within the second.
*/
PM_INLINE bool pb2_contains(const pb2* b1, const pb2* b2)
{
return b2->min.x >= b1->min.x &&
b2->min.y >= b1->min.y &&
b2->max.x <= b1->max.x &&
b2->max.y <= b1->max.y;
}
/**
* @brief Returns `true` if the box contains the point `v`
*/
PM_INLINE bool pb2_contains_point(const pb2* b, pv2 v)
{
pfloat x = v.x;
pfloat y = v.y;
return x > b->min.x &&
y > b->min.y &&
x < b->max.x &&
y < b->max.y;
}
/**
* @brief Returns the area of the box
*/
PM_INLINE pfloat pb2_area(const pb2* b)
{
return (b->max.x - b->min.x) * (b->max.y - b->min.y);
}
/**
* @brief Computes the center of the box
*/
PM_INLINE pv2 pb2_center(const pb2* b)
{
pv2 offset = pv2_scale(pv2_sub(b->max, b->min), 1.0f / 2.0f);
return pv2_add(offset, b->min);
}
/**
* @brief Computes the minimum box containing all of the vertices
* @param verts The vertices
* @param count The number of vertices
*/
pb2 pb2_enclosing(const pv2 verts[], int count);
/**
* @brief Computes the minimum AABB obtained by transforming the vertices of
* the specified AABB
*/
pb2 pb2_transform(const pt2* t, const pb2* b);
/**
* @brief The pseudo random number generator (RNG) state
*/
typedef struct prng_t
{
uint32_t s[4];
} prng_t;
/**
* @brief Initialize and seed the RNG
* @param rng A reference to the RNG
* @param seed The seed (choosing the same seed will yield identical sequences)
*/
void prng_seed(prng_t* rng, uint64_t seed);
/**
* @brief Generates a pseudo random number in [0, UINT32_MAX]
* @param rng A reference to the RNG
*/
uint32_t prng_random(prng_t* rng);
/**
* @brief Generates a psuedo random number in [0, 1]
*/
pfloat pf_random(prng_t* rng);
#ifdef __cplusplus
}
#endif
#endif // PICO_MATH_H
#ifdef PICO_MATH_IMPLEMENTATION
pfloat pf_lerp_angle(pfloat angle1, pfloat angle2, pfloat alpha)
{
const pv2 v1 = pv2_make(pf_cos(angle1), pf_sin(angle1));
const pv2 v2 = pv2_make(pf_cos(angle2), pf_sin(angle2));
// Calculuate cosine of angle between the two vectors
pfloat dot = pf_clamp(pv2_dot(v1, v2), -1.0f, 1.0f);
// LERP if the cosine is too close to its limits
if (pf_equal(dot, 1.0f) || pf_equal(dot, -1.0f))
{
pv2 tmp = pv2_lerp(v1, v2, alpha);
return pf_normalize_angle(pf_atan2(tmp.y, tmp.x));
}
// Calculate angle
pfloat angle = pf_acos(dot) * alpha;
// Gram-Schmidt(construct a new vector 'v0' that is orthogonal to 'v1')
pv2 v0 = pv2_sub(v2, pv2_scale(v1, dot));
v0 = pv2_normalize(v0);
// Calcuate vector in new coordinate system
pv2 tmp1 = pv2_scale(v1, pf_cos(angle));
pv2 tmp2 = pv2_scale(v0, pf_sin(angle));
pv2 tmp = pv2_add(tmp1, tmp2);
// Calculate new angle
return pf_normalize_angle(pf_atan2(tmp.y, tmp.x));
}
bool pt2_equal(const pt2* t1, const pt2* t2)
{
return pf_equal(t1->t00, t2->t00) &&
pf_equal(t1->t10, t2->t10) &&
pf_equal(t1->t01, t2->t01) &&
pf_equal(t1->t11, t2->t11) &&
pf_equal(t1->tx, t2->tx) &&
pf_equal(t1->ty, t2->ty);
}
void pt2_set_scale(pt2* t, pv2 scale)
{
pfloat angle = pt2_get_angle(t);
pfloat c = pf_cos(angle);
pfloat s = pf_sin(angle);
pfloat sx = scale.x;
pfloat sy = scale.y;
t->t00 = sx * c; t->t01 = sy * -s;
t->t10 = sx * s; t->t11 = sy * c;
}
pv2 pt2_get_scale(const pt2* t)
{
pfloat angle = pt2_get_angle(t);
pfloat cos_sign = pf_sign(pf_cos(angle));
pv2 out;
if (0.0f == cos_sign) //TODO: pf_equal?
{
out.x = t->t10;
out.y = -t->t01;
return out;
}
pv2 v1 = pv2_make(t->t00, t->t10);
pv2 v2 = pv2_make(t->t01, t->t11);
out.x = pf_sign(t->t00) * cos_sign * pv2_len(v1);
out.y = pf_sign(t->t11) * cos_sign * pv2_len(v2);
return out;
}
void pt2_set_angle(pt2* t, pfloat angle)
{
pfloat c = pf_cos(angle);
pfloat s = pf_sin(angle);
pv2 scale = pt2_get_scale(t);
pfloat sx = scale.x;
pfloat sy = scale.y;
t->t00 = sx * c; t->t01 = sy * -s;
t->t10 = sx * s; t->t11 = sy * c;
}
pt2 pt2_inv(const pt2* t)
{
pfloat det = pt2_det(t);
if (0.0f == det) // Intentionally not using epsilon because determinants
{ // can be really small and still be valid
return pt2_identity();
}
pfloat inv_det = 1.0f / det;
pt2 out;
out.t00 = t->t11 * inv_det; out.t01 = -t->t01 * inv_det;
out.t10 = -t->t10 * inv_det; out.t11 = t->t00 * inv_det;
out.tx = (t->t01 * t->ty - t->t11 * t->tx) * inv_det;
out.ty = (t->t10 * t->tx - t->t00 * t->ty) * inv_det;
return out;
}
pt2 pt2_mult(const pt2* t1, const pt2* t2)
{
pt2 out;
out.t00 = t1->t00 * t2->t00 + t1->t01 * t2->t10;
out.t10 = t1->t10 * t2->t00 + t1->t11 * t2->t10;
out.t01 = t1->t00 * t2->t01 + t1->t01 * t2->t11;
out.t11 = t1->t10 * t2->t01 + t1->t11 * t2->t11;
out.tx = t1->t00 * t2->tx + t1->t01 * t2->ty + t1->tx;
out.ty = t1->t10 * t2->tx + t1->t11 * t2->ty + t1->ty;
return out;
}
pt2 pt2_lerp(const pt2* t1, const pt2* t2, pfloat alpha)
{
pv2 scale1 = pt2_get_scale(t1);
pv2 scale2 = pt2_get_scale(t2);
pfloat angle1 = pt2_get_angle(t1);
pfloat angle2 = pt2_get_angle(t2);
pv2 pos1 = pt2_get_pos(t1);
pv2 pos2 = pt2_get_pos(t2);
pv2 scale = pv2_lerp(scale1, scale2, alpha);
pv2 pos = pv2_lerp(pos1, pos2, alpha);
pfloat angle = pf_lerp_angle(angle1, angle2, alpha);
pfloat c = pf_cos(angle);
pfloat s = pf_sin(angle);
pfloat sx = scale.x;
pfloat sy = scale.y;
pfloat tx = pos.x;
pfloat ty = pos.y;
pt2 out;
out.t00 = sx * c; out.t01 = sy * -s; out.tx = tx;
out.t10 = sx * s; out.t11 = sy * c; out.ty = ty;
return out;
}
bool pb2_equal(const pb2* b1, const pb2* b2)
{
return pv2_equal(b1->min, b2->min) && pv2_equal(b1->max, b2->max);
}
pb2 pb2_combine(const pb2* b1, const pb2* b2)
{
pv2 min = pv2_min(b1->min, b2->min);
pv2 max = pv2_max(b1->max, b2->max);
return pb2_make_minmax(min, max);
}
pb2 pb2_overlap(const pb2* b1, const pb2* b2)
{
if (!pb2_overlaps(b1, b2))
return pb2_make(0.0f, 0.0f, 0.0f, 0.0f);
pv2 min = pv2_max(b1->min, b2->min);
pv2 max = pv2_min(b1->max, b2->max);
return pb2_make_minmax(min, max);
}