diff --git a/docs/api-guide/fields.md b/docs/api-guide/fields.md index a8a1865a49..6bf0ed15ea 100644 --- a/docs/api-guide/fields.md +++ b/docs/api-guide/fields.md @@ -561,6 +561,8 @@ Note that the `WritableField` class that was present in version 2.x no longer ex ## Examples +### A Basic Custom Field + Let's look at an example of serializing a class that represents an RGB color value: class Color(object): @@ -600,7 +602,7 @@ As an example, let's create a field that can be used to represent the class name """ return obj.__class__.__name__ -#### Raising validation errors +### Raising validation errors Our `ColorField` class above currently does not perform any data validation. To indicate invalid data, we should raise a `serializers.ValidationError`, like so: @@ -646,6 +648,137 @@ The `.fail()` method is a shortcut for raising `ValidationError` that takes a me This style keeps your error messages cleaner and more separated from your code, and should be preferred. +### Using `source='*'` + +Here we'll take an example of a _flat_ `DataPoint` model with `x_coordinate` and `y_coordinate` attributes. + + class DataPoint(models.Model): + label = models.CharField(max_length=50) + x_coordinate = models.SmallIntegerField() + y_coordinate = models.SmallIntegerField() + +Using a custom field and `source='*'` we can provide a nested representation of +the coordinate pair: + + class CoordinateField(serializers.Field): + + def to_representation(self, obj): + ret = { + "x": obj.x_coordinate, + "y": obj.y_coordinate + } + return ret + + def to_internal_value(self, data): + ret = { + "x_coordinate": data["x"], + "y_coordinate": data["y"], + } + return ret + + + class DataPointSerializer(serializers.ModelSerializer): + coordinates = CoordinateField(source='*') + + class Meta: + model = DataPoint + fields = ['label', 'coordinates'] + +Note that this example doesn't handle validation. Partly for that reason, in a +real project, the coordinate nesting might be better handled with a nested serialiser +using `source='*'`, with two `IntegerField` instances, each with their own `source` +pointing to the relevant field. + +The key points from the example, though, are: + +* `to_representation` is passed the entire `DataPoint` object and must map from that +to the desired output. + + >>> instance = DataPoint(label='Example', x_coordinate=1, y_coordinate=2) + >>> out_serializer = DataPointSerializer(instance) + >>> out_serializer.data + ReturnDict([('label', 'testing'), ('coordinates', {'x': 1, 'y': 2})]) + +* Unless our field is to be read-only, `to_internal_value` must map back to a dict +suitable for updating our target object. With `source='*'`, the return from +`to_internal_value` will update the root validated data dictionary, rather than a single key. + + >>> data = { + ... "label": "Second Example", + ... "coordinates": { + ... "x": 3, + ... "y": 4, + ... } + ... } + >>> in_serializer = DataPointSerializer(data=data) + >>> in_serializer.is_valid() + True + >>> in_serializer.validated_data + OrderedDict([('label', 'Second Example'), + ('y_coordinate', 4), + ('x_coordinate', 3)]) + +For completeness lets do the same thing again but with the nested serialiser +approach suggested above: + + class NestedCoordinateSerializer(serializers.Serializer): + x = serializers.IntegerField(source='x_coordinate') + y = serializers.IntegerField(source='y_coordinate') + + + class DataPointSerializer(serializers.ModelSerializer): + coordinates = NestedCoordinateSerializer(source='*') + + class Meta: + model = DataPoint + fields = ['label', 'coordinates'] + +Here the mapping between the target and source attribute pairs (`x` and +`x_coordinate`, `y` and `y_coordinate`) is handled in the `IntegerField` +declarations. It's our `NestedCoordinateSerializer` that takes `source='*'`. + +Our new `DataPointSerializer` exhibits the same behaviour as the custom field +approach. + +Serialising: + + >>> out_serializer = DataPointSerializer(instance) + >>> out_serializer.data + ReturnDict([('label', 'testing'), + ('coordinates', OrderedDict([('x', 1), ('y', 2)]))]) + +Deserialising: + + >>> in_serializer = DataPointSerializer(data=data) + >>> in_serializer.is_valid() + True + >>> in_serializer.validated_data + OrderedDict([('label', 'still testing'), + ('x_coordinate', 3), + ('y_coordinate', 4)]) + +But we also get the built-in validation for free: + + >>> invalid_data = { + ... "label": "still testing", + ... "coordinates": { + ... "x": 'a', + ... "y": 'b', + ... } + ... } + >>> invalid_serializer = DataPointSerializer(data=invalid_data) + >>> invalid_serializer.is_valid() + False + >>> invalid_serializer.errors + ReturnDict([('coordinates', + {'x': ['A valid integer is required.'], + 'y': ['A valid integer is required.']})]) + +For this reason, the nested serialiser approach would be the first to try. You +would use the custom field approach when the nested serialiser becomes infeasible +or overly complex. + + # Third party packages The following third party packages are also available.