Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

「咨询开源硬件」支援高频量化对冲算筹 #4

Open
englianhu opened this issue Nov 26, 2020 · 2 comments
Open

「咨询开源硬件」支援高频量化对冲算筹 #4

englianhu opened this issue Nov 26, 2020 · 2 comments

Comments

@englianhu
Copy link
Owner

Screenshot_1


Best RAM You Can Buy Today
Patriot Viper Steel DDR4-4400 (2x 8GB) ...
Patriot Viper RGB DDR4-3600 (2x 8GB) ...
Patriot Viper 4 DDR4-3400 (2x 8GB) ...
Corsair Vengeance RGB Pro DDR4-3200 (4x 8GB) ...
Patriot Viper Steel DDR4-3200 (2x 16GB) ...
Patriot Viper Steel DDR4-3600 C18 (2x 32GB) ...
G. ...
Corsair Vengeance LPX DDR4-2666 (2x 8GB)
Oct 20, 2020
Best RAM 2020: Fast, Cheap and RGB | Tom's Hardware


Nvidia GeForce RTX 3080. The best graphics card for PC gaming right now. ...
Nvidia GeForce RTX 2070 Super. The best 4K graphics card for reasonable money. ...
AMD Radeon RX 5700. The best 1440p graphics card… with a little work. ...
AMD Radeon RX 5600 XT. ...
Nvidia GeForce GTX 1660 Super. ...
Nvidia GeForce GTX 1650 Super.
Oct 21, 2020
The best graphics cards in 2020 | PC Gamer

Need to upgraded my equipement to enchance the efficiency...

Originally posted by @englianhu in englianhu/ali-zonghui#9 (comment)

@englianhu
Copy link
Owner Author

englianhu commented Nov 26, 2020

> mts <- smp %>% 
+     msts(seasonal.periods = c(1440, nrow(smp)))
>   
>   mts <- llply(1:ncol(mts), function(i) {
+     y <- mts[,i] %>% 
+       tbats %>% 
+       forecast(h = 1440) %>% 
+       as_tibble
+       names(y)[1] <- names(smp)[i]
+       y
+     }) %>% 
+     bind_rows %>% 
+     mutate(Model = factor('tbats'), Period = factor('dy.qt'), type = case_when(
+       !is.na(open) ~ 'open', 
+       !is.na(high) ~ 'high', 
+       !is.na(low) ~ 'low', 
+       !is.na(close) ~ 'close')) %>% 
+     dlply(.(type, Period), function(x) {
+       x %<>% dplyr::rename(open.Point.Forecast = open, 
+                            high.Point.Forecast = high, 
+                            low.Point.Forecast = low, 
+                            close.Point.Forecast = close)
+       names(x)[str_detect(names(x), '80|95')] <- paste0(x$type[1], '.', names(x)[str_detect(names(x), '80|95')])
+       x[colSums(!is.na(x)) > 0] %>% 
+         data.frame %>% 
+         as_tibble %>% 
+         dplyr::select(-type)
+       
+       }) %>% 
+     join_all %>% 
+     as_tibble
Joining by: Model, Period
Joining by: Model, Period
- Error: cannot allocate vector of size 11.1 Gb
>   memory.size()
[1] 11984.01
> gc()
           used  (Mb) gc trigger    (Mb)   max used    (Mb)
Ncells  3767976 201.3    7315067   390.7    7315067   390.7
Vcells 12814470  97.8 1474157596 11247.0 1534873241 11710.2
> memory.limit()
[1] 16274

memory.size() occupied 75% of memory.limit()

> mts <- smp %>% 
+     msts(seasonal.periods = c(1440, nrow(smp)))
>   
>   mts <- llply(1:ncol(mts), function(i) {
+     y <- mts[,i] %>% 
+       tbats %>% 
+       forecast(h = 1440) %>% 
+       as_tibble
+       names(y)[1] <- names(smp)[i]
+       y
+     }) %>% 
+     bind_rows %>% 
+     mutate(Model = factor('tbats'), Period = factor('dy.qt'), type = case_when(
+       !is.na(open) ~ 'open', 
+       !is.na(high) ~ 'high', 
+       !is.na(low) ~ 'low', 
+       !is.na(close) ~ 'close')) %>% 
+     dlply(.(type, Period), function(x) {
+       x %<>% dplyr::rename(open.Point.Forecast = open, 
+                            high.Point.Forecast = high, 
+                            low.Point.Forecast = low, 
+                            close.Point.Forecast = close)
+       names(x)[str_detect(names(x), '80|95')] <- paste0(x$type[1], '.', names(x)[str_detect(names(x), '80|95')])
+       x[colSums(!is.na(x)) > 0] %>% 
+         data.frame %>% 
+         as_tibble %>% 
+         dplyr::select(-type)
+       
+       })
> mtss <- mts %>% bind_cols
New names:
* Model -> Model...6
* Period -> Period...7
* Model -> Model...13
* Period -> Period...14
* Model -> Model...20
* ...
> mtss
# A tibble: 1,440 x 28
   close.Lo.80 close.Hi.80 close.Lo.95 close.Hi.95 close.Point.For~ Model...6
         <dbl>       <dbl>       <dbl>       <dbl>            <dbl> <fct>    
 1        118.        118.        118.        118.             118. tbats    
 2        118.        118.        118.        118.             118. tbats    
 3        118.        118.        118.        118.             118. tbats    
 4        118.        118.        118.        118.             118. tbats    
 5        118.        118.        118.        118.             118. tbats    
 6        118.        118.        118.        118.             118. tbats    
 7        118.        118.        118.        118.             118. tbats    
 8        118.        118.        118.        118.             118. tbats    
 9        118.        118.        118.        118.             118. tbats    
10        118.        118.        118.        118.             118. tbats    
# ... with 1,430 more rows, and 22 more variables: Period...7 <fct>,
#   high.Lo.80 <dbl>, high.Hi.80 <dbl>, high.Lo.95 <dbl>, high.Hi.95 <dbl>,
#   high.Point.Forecast <dbl>, Model...13 <fct>, Period...14 <fct>,
#   low.Lo.80 <dbl>, low.Hi.80 <dbl>, low.Lo.95 <dbl>, low.Hi.95 <dbl>,
#   low.Point.Forecast <dbl>, Model...20 <fct>, Period...21 <fct>,
#   open.Point.Forecast <dbl>, open.Lo.80 <dbl>, open.Hi.80 <dbl>,
#   open.Lo.95 <dbl>, open.Hi.95 <dbl>, Model...27 <fct>, Period...28 <fct>
> mtss[str_detect(names(mtss), 'Model.|Period.')]
# A tibble: 1,440 x 8
   Model...6 Period...7 Model...13 Period...14 Model...20 Period...21 Model...27
   <fct>     <fct>      <fct>      <fct>       <fct>      <fct>       <fct>     
 1 tbats     dy.qt      tbats      dy.qt       tbats      dy.qt       tbats     
 2 tbats     dy.qt      tbats      dy.qt       tbats      dy.qt       tbats     
 3 tbats     dy.qt      tbats      dy.qt       tbats      dy.qt       tbats     
 4 tbats     dy.qt      tbats      dy.qt       tbats      dy.qt       tbats     
 5 tbats     dy.qt      tbats      dy.qt       tbats      dy.qt       tbats     
 6 tbats     dy.qt      tbats      dy.qt       tbats      dy.qt       tbats     
 7 tbats     dy.qt      tbats      dy.qt       tbats      dy.qt       tbats     
 8 tbats     dy.qt      tbats      dy.qt       tbats      dy.qt       tbats     
 9 tbats     dy.qt      tbats      dy.qt       tbats      dy.qt       tbats     
10 tbats     dy.qt      tbats      dy.qt       tbats      dy.qt       tbats     
# ... with 1,430 more rows, and 1 more variable: Period...28 <fct>
> mtss[str_detect(names(mtss), 'Model.|Period.')] <- NULL
> mtss

I used bind_cols() as alternative method to solve my issue, there has different methods depends on your issue (example: normally matrix will be more efficient than data.frame)...

lineprof in Advanced R by Hadley Wickham
microbenchmark in Advanced R by Hadley Wickham

There has eventually need to use better pc for high efficiency computing...

# for free to join this conversation on GitHub. Already have an account? # to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant