-
Notifications
You must be signed in to change notification settings - Fork 0
/
QGE.Errors.tex
executable file
·565 lines (560 loc) · 27.5 KB
/
QGE.Errors.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
In this section we present the convergence, and the error analysis associated
with the semi-discretization. We will rely heavily on the
\autoref{sec:SQGEErrors} which contains the finite error analysis for the SQGE.
\begin{prop} \label{prop:Stability}
The solution to \eqref{eqn:SemiDiscretization}, $\psi^h$, is stable. For
any $t>0$ the following inequality holds:
\begin{equation}
\frac{1}{2}\|\nabla \psi^h(t)\|^2 + \frac{Re^{-1}}{2}\int_{0}^{t}\! \|\Delta
\psi^h(t')\|^2 \, dt' \le \frac{1}{2} \|\nabla \psi^h_0\|^2
+ \frac{Re\, Ro^{-2}}{2} \int_{0}^{t}\! \|F(t')\|^2_{-1}\, dt'.
\label{eqn:Stability}
\end{equation}
\end{prop}
\begin{proof}
Take $\chi^h = \psi^h$ in \eqref{eqn:SemiDiscretization} and note that
$b(\psi^h;\psi^h,\psi^h) = 0$. Since $(\psi^h_x,\psi^h) =
-(\psi^h,\psi^h_x)$, we get $(\psi^h_x, \psi^h) = 0$. Thus, we have
\begin{equation*}
\frac{1}{2} \frac{d}{dt} \|\nabla \psi^h\|^2 + Re^{-1} \|\Delta \psi^h\|^2 =
Ro^{-1} (F,\psi^h) \le Ro^{-1} \|F\|_{-1}\,\|\nabla \chi\|.
\end{equation*}
Using Young inequality gives
\begin{equation}
\frac{1}{2} \frac{d}{dt} \|\nabla \psi^h\|^2 + Re^{-1} \|\Delta \psi^h\|^2 =
\frac{Ro^{-2}}{2\epsilon} \|F\|_{-1}^2 + \frac{\epsilon}{2}\|\nabla
\psi^h\|^2.
\label{eqn:HolderStability}
\end{equation}
Now taking $\epsilon = Re^{-1}$ in \eqref{eqn:HolderStability} results in
\begin{equation*}
\frac{1}{2} \frac{d}{dt} \|\nabla \psi^h\|^2 + \frac{Re^{-1}}{2} \|\Delta
\psi^h\|^2 = \frac{Re\,Ro^{-2}}{2} \|F\|_{-1}^2.
\end{equation*}
Assuming $\|\Delta \psi^h\| \in L^1(0,T)$ and integrating over $(0,t)$ gives
the final result.
\end{proof}
\begin{lemma} \label{lma:BH1Bound}
There are finite constants $\Gamma_3,\Gamma_4>0$ such that, for all
$\psi,\, \varphi,\, \chi \in X$, the following inequalities hold:
\begin{align}
b(\psi;\varphi,\chi) &\le \Gamma_3 \|\Delta \psi\|\, \|\Delta \varphi\|\,
\left(\|\nabla \chi\|^{\nicefrac{1}{2}}
\|\Delta \chi\|^{\nicefrac{1}{2}}\right) \label{eqn:BH1BoundChi} \\
b(\psi;\varphi,\chi) &\le \Gamma_4 \left(\|\nabla \psi\|^{\nicefrac{1}{2}}
\|\Delta \psi\|^{\nicefrac{1}{2}}\right)\,
\|\Delta \varphi\|\, \|\Delta \chi\|. \label{eqn:BH1BoundPsi}
\end{align}
\end{lemma}
\begin{proof}
We will begin with the proof of \eqref{eqn:BH1BoundChi} and then prove
\eqref{eqn:BH1BoundPsi} last. For \eqref{eqn:BH1BoundChi} we begin in the same
way as we did for estimate \eqref{eqn:BH2Bounds} in \autoref{lma:ContinuousForms}.
That is, we apply the H\"older inequality, \eqref{eqn:Holder} to $b(\psi;
\varphi, \chi)$ and set $p=2$, while setting $q=r=4$, giving
\begin{equation*}
b(\psi;\varphi,\chi) \le \|\Delta \psi\| \|\nabla \varphi\|_{L^4} \|\nabla
\chi\|_{L^4}.
\end{equation*}
Now, applying the Ladyzhenskaya inequality \eqref{eqn:Ladyzhenskaya}, we get
\begin{equation*}
b(\psi;\varphi,\chi) \le \Gamma \|\Delta \psi\|
\|\nabla \varphi\|^{\nicefrac{1}{2}} \|\Delta \varphi\|^{\nicefrac{1}{2}}
\|\nabla \chi\|^{\nicefrac{1}{2}} \|\Delta \chi\|^{\nicefrac{1}{2}}.
\end{equation*}
Next using that the semi-norm, $|\cdot|_2$, and the norm, $\|\cdot\|_2$, are
equivalent in $H^2_0(\Omega)$ (see (1.2.8) in Ciarlet \cite{Ciarlet}) we have
\begin{equation*}
b(\psi;\varphi,\chi) \le \Gamma_3 \|\Delta \psi\|\, \|\Delta \varphi\|\,
\left(\|\nabla \chi\|^{\nicefrac{1}{2}}
\|\Delta \chi\|^{\nicefrac{1}{2}}\right),
\end{equation*}
which proves estimate \eqref{eqn:BH1BoundChi}. \\
For estimate \eqref{eqn:BH1BoundPsi} we apply \autoref{lma:trilinear},
thus using \eqref{eqn:trilinear}, H\"older inequality, \eqref{eqn:Holder} reads
\begin{equation}
b(\psi; \varphi, \chi) \le \|\nabla \psi\|_{L^p} \|\Delta \varphi\|_{L^q}
\|\nabla \chi\|_{L^r},\quad \frac{1}{p} + \frac{1}{q} + \frac{1}{r} = 1.
\label{eqn:BStarHolder}
\end{equation}
Letting $p = r = 4$, and $q = 2$ in \eqref{eqn:BStarHolder} gives
\begin{equation*}
b(\psi; \varphi, \chi) \le \|\nabla \psi\|_{L^4} \|\Delta \varphi\|
\|\nabla \chi\|_{L^4}.
\end{equation*}
Then applying the Ladyzhenskaya inequality, \eqref{eqn:Ladyzhenskaya} we get
\begin{equation*}
b(\psi;\varphi,\chi) \le \Gamma \|\Delta \varphi\|
\|\nabla \psi\|^{\nicefrac{1}{2}} \|\Delta \psi\|^{\nicefrac{1}{2}}
\|\nabla \chi\|^{\nicefrac{1}{2}} \|\Delta \chi\|^{\nicefrac{1}{2}}.
\end{equation*}
Finally, using that the semi-norm, $|\cdot|_2$, and the norm, $\|\cdot\|_2$,
are equivalent in $H^2_0(\Omega)$ gives the desired result
\begin{equation*}
b(\psi;\varphi,\chi) \le \Gamma_4 \left(\|\nabla \psi\|^{\nicefrac{1}{2}}
\|\Delta \psi\|^{\nicefrac{1}{2}}\right)\,
\|\Delta \varphi\|\, \|\Delta \chi\|.
\end{equation*}
\end{proof}
The next theorem proves the convergence of the FE approximation $\psi^h$ to the
exact solution, $\psi$, to QGE \eqref{eqn:QGE_psi}. The proof is similar to
the proof for Theorem 22 in \cite{Layton08}. \\
\begin{thm} \label{thm:SemiConvergence}
Let $\psi$ be a unique solution to the QGE \eqref{eqn:QGE_psi}. Then there
exists constants \\ $C_1(T,Re,\Gamma_3)$, $C_2(T,Re,\Gamma_3)$,
$C_3(Re,Ro,\Gamma_2)$, and $C_4(T, F, \psi_0, \Gamma_1, \Gamma_2, Re,
Ro,\|\Delta \psi\|_{L^4(0,T;L^2)})$ such that for all $t\in [0,T]$
\begin{equation}
\begin{split}
\|\nabla (\psi &- \psi^h) \|^2 + Re^{-1}
\int_{0}^{T}\! \|\Delta (\psi - \psi^h)\|^2 \, dt
\le C_1(T,Re,\Gamma_3)\,\|\nabla(\psi_0 - \psi^h(0))\|^2 \\
& + \inf_{\lambda^h(t) \in X^h} \biggl\{
C_2(T,Re,\Gamma_3)\,\int_0^T\! \|\nabla(\psi - \lambda^h)_t\|^2_{-1}
+ C_3(Re,Ro,\Gamma_2)\, \|\Delta(\psi - \lambda^h)\|^2\, dt \\
& + C_4(T,Re,Ro,F,\Gamma_1,\Gamma_2,\Gamma_4, \|\Delta
\psi\|_{L^4(0,T;L^2)})\,\|\Delta(\psi - \lambda^h)\|_{L^4(0,T;L^2)} \\
& + 2\,\|\nabla (\psi - \lambda^h)\|^2\biggr\},
\end{split}
\label{eqn:SemiConvergence}
\end{equation}
where
\begin{align}
C_1(T,Re,\Gamma_3) &:= 4\, \exp\left(\frac{Re^{-3} \Gamma_3^4}{432}
\int_{0}^{T}\! \|\Delta \psi\|^4\, dt\right), \label{eqn:C1}\\
C_2(T,Re,\Gamma_3) &:= \frac{9}{4}\, Re\, C_1(T,Re,\Gamma_3), \label{eqn:C2}\\
C_3(Re,Ro,\Gamma_2) &:= 2 + 2\left(Re^{-2} + Ro^{-2}\, \Gamma_2^2\right), \label{eqn:C3} \\
C_4(T,F,\psi_0,Re,Ro,\Gamma_1,\Gamma_3,\Gamma_4,\int_{0}^{T}\! \|\Delta
\psi\|^4\, dt) &:= \frac{C_2(T,Re,\Gamma_3)}{2} \\
& \biggl(\Gamma_1^2 \|\Delta \psi\|^4_{L^4(0,T;L^2)} + \Gamma_4
C^*(F,\psi_0,Re,Ro)\biggr) \label{eqn:C4}
\end{align}
and $C^*(F,\psi_0,Re,Ro),\, \Gamma_1,\, \Gamma_2,\, \Gamma_3,\, \Gamma_4$ are
the stability bound from \autoref{prop:Stability}, and the constants from
\autoref{lma:ContinuousForms} and \autoref{lma:BH1Bound}, respectively.
\end{thm}
\begin{proof}
Let $\chi = \chi^h \in X^h$ and subtract \eqref{eqn:SemiDiscretization} from
\eqref{eqn:QGEWF} then let $e:=\psi - \psi^h$ and we obtain
\begin{equation*}
(\nabla e_t, \nabla \chi^h) + \left[b(\psi;\psi,\chi^h) - b(\psi^h;\psi^h,\chi^h)\right]
+ Re^{-1}(\Delta e, \Delta \chi^h) - Ro^{-1} (e_x, \chi^h) = 0\quad
\forall \chi^h \in X^h \subset X.
\end{equation*}
Now adding and subtracting $b(\psi^h;\psi,\chi^h)$ gives
\begin{equation*}
(\nabla e_t, \nabla \chi^h) + \left[b(e;\psi,\chi^h) + b(\psi^h;e,\chi^h)\right]
+ Re^{-1}(\Delta e, \Delta \chi^h) - Ro^{-1} (e_x, \chi^h) = 0\quad
\forall \chi^h \in X^h \subset X.
\end{equation*}
Take $\lambda^h:[0,T] \to X^h$ arbitrary and decomposing the error $e = \eta -
\Phi^h$, where $\eta := \psi - \lambda^h$ and $\Phi^h := \psi^h - \lambda^h$,
results in
\begin{align*}
(\nabla \Phi^h_t, \nabla \chi^h) + Re^{-1}(\Delta \Phi^h, \Delta \chi^h)
& = (\nabla \eta_t, \nabla \chi^h) + Re^{-1}(\Delta \eta, \Delta \chi^h)
- Ro^{-1} \left[(\eta_x, \chi^h) - (\Phi^h_x, \chi^h)\right] \\
& + \left[ b(\eta;\psi,\chi^h) - b(\Phi^h;\psi,\chi^h)
+ b(\psi^h;\eta,\chi^h) - b(\psi^h;\Phi^h,\chi^h)\right].
\end{align*}
Let $\chi^h = \Phi^h$; then noting $b(\psi^h;\Phi^h,\Phi^h) = 0$ and $(\Phi^h_x,
\Phi^h) = -(\Phi^h,\Phi^h_x)$ implies $(\Phi^h_x,\Phi^h) = 0$, we get
\begin{align*}
\frac{1}{2} \frac{d}{dt} \|\nabla \Phi^h\|^2 + Re^{-1}\|\Delta \Phi^h\|^2
= (\nabla \eta_t, \nabla \Phi^h) &+ Re^{-1}(\Delta \eta, \Delta \Phi^h)
- Ro^{-1} (\eta_x, \Phi^h) \\
& + \left[ b(\eta;\psi,\Phi^h) - b(\Phi^h;\psi,\Phi^h)
+ b(\psi^h;\eta,\Phi^h)\right].
\end{align*}
Using the H\"older inequality, \eqref{eqn:Holder}, the bounds for $(\psi_x,\chi)$
given in \autoref{lma:ContinuousForms}, and the bounds for $b$ from estimate
\eqref{eqn:BH2Bounds} in \autoref{lma:ContinuousForms}, and
\autoref{lma:BH1Bound} we have
\begin{equation}
\begin{split}
\frac{1}{2} \frac{d}{dt} \|\nabla \Phi^h\|^2 + Re^{-1}\|\Delta \Phi^h\|^2
&\le \|\nabla \eta_t\|_{-1} \|\Delta \Phi^h\|
+ Re^{-1}\|\Delta \eta\|\, \|\Delta \Phi^h\|
+ Ro^{-1} \Gamma_2 \|\Delta \eta\| \|\Delta \Phi^h\| \\
& + \left[ b(\eta;\psi,\Phi^h) - b(\Phi^h;\psi,\Phi^h)
+ b(\psi^h;\eta,\Phi^h)\right].
\end{split}
\label{eqn:HolderError}
\end{equation}
Then using the Young inequality, \eqref{eqn:Young} we have, for all $\epsilon>0$
\begin{align}
\|\nabla \eta_t\|_{-1} \|\Delta \Phi^h\|
&\le \frac{\epsilon}{2} \|\Delta \Phi^h\|^2
+ \frac{1}{2 \epsilon} \|\eta_t\|_{-1}^2 \label{eqn:YoungT} \\
Re^{-1} \|\Delta \eta\| \|\Delta \Phi^h\|
&\le \frac{\epsilon}{2} \|\Delta \Phi^h\|^2
+ \frac{Re^{-2}}{2 \epsilon} \|\Delta \eta\|^2 \label{eqn:YoungLaplace} \\
Ro^{-1} \Gamma_2 \|\Delta \eta\| \|\Delta \Phi^h\|
&\le \frac{\epsilon}{2} \|\Delta \Phi^h\|^2
+ \frac{Ro^{-2} \Gamma_2^2}{2 \epsilon} \|\Delta \eta\|^2. \label{eqn:YoungBeta}
\end{align}
Using the Young inequality, \eqref{eqn:Young} with $\varepsilon > 0$ and
estimate \eqref{eqn:BH2Bounds} in \autoref{lma:ContinuousForms}
\begin{align*}
b(\eta;\psi,\Phi^h) &\le \Gamma_1 \|\Delta \eta\|\,\|\Delta \psi\|\, \|\Delta \Phi^h\| \\
&\le \frac{\varepsilon}{2} \|\Delta \Phi^h\|^2
+ \frac{\Gamma_1^2}{2 \varepsilon} \|\Delta \eta\|^2 \|\Delta \psi\|^2,
\end{align*}
and letting $\varepsilon = 2 \epsilon$ we have
\begin{equation}
b(\eta; \psi, \Phi^h) \le \epsilon \|\Delta \Phi^h\|^2
+ \frac{\Gamma_1^2}{4 \epsilon} \|\Delta \eta\|^2 \|\Delta \psi\|^2.
\label{eqn:YoungBH2}
\end{equation}
Combing \eqref{eqn:YoungT} - \eqref{eqn:YoungBH2} and \eqref{eqn:HolderError}
we obtain
\begin{equation}
\begin{split}
\frac{1}{2} \frac{d}{dt} \|\nabla \Phi^h\|^2 + \frac{1}{2}\left(2Re^{-1} -
5 \epsilon \right)\|\Delta \Phi^h\|^2
&\le \frac{1}{2 \epsilon}\left[\|\nabla \eta_t\|_{-1}^2
+ \left( Re^{-2} + Ro^{-2} \Gamma_2^2 \right) \|\Delta \eta\|^2\right] \\
& + \frac{\Gamma_1^2}{4 \epsilon}\|\Delta \eta\|^2 \|\Delta \psi\|^2 -
\left[b(\Phi^h;\psi,\Phi^h) - b(\psi^h;\eta,\Phi^h)\right].
\end{split}
\label{eqn:B1Inequality}
\end{equation}
For the term $b(\Phi^h; \psi, \Phi^h)$ we use \autoref{lma:BH1Bound} and the
following version of the Young inequality, \eqref{eqn:Young} (from \cite{Layton08} Equation (1.1.4)):
given $a,\,b>0,$ for any $\epsilon > 0,\, 1\le p \le \infty,\, \frac{1}{p} +
\frac{1}{q} = 1$, and
$C(\epsilon,p,q)=\dfrac{\left(p\,\epsilon\right)^{-\nicefrac{q}{p}}}{q}$
\begin{equation*}
ab \le \epsilon\, a^p + C(\epsilon,p,q)\, b^q
\end{equation*}
with $p=\nicefrac{4}{3},\, q = 4$ to obtain
\begin{align}
b(\Phi^h; \psi, \Phi^h) &\le \Gamma_3\, \|\Delta \Phi^h\|^{\nicefrac{3}{2}}
\left(\|\Delta \psi\| \|\nabla \Phi^h\|^{\nicefrac{1}{2}}\right)
\nonumber \\
&\le \epsilon \|\Delta \Phi^h\|^2 + C^*_1(\Gamma_3,\epsilon) \|\Delta \psi\|^4
\|\nabla \Phi^h\|^2,
\label{eqn:EpsYoungH1}
\end{align}
where $C^*_1(\Gamma_3,\epsilon) = \nicefrac{27}{256}\,\Gamma_3^4\,\epsilon^{-3}$.
Combining \eqref{eqn:B1Inequality} and \eqref{eqn:EpsYoungH1} gives
\begin{equation}
\begin{split}
\frac{1}{2} \frac{d}{dt} \|\nabla \Phi^h\|^2 + \frac{1}{2}\left(2Re^{-1} -
7 \epsilon \right)
&\|\Delta \Phi^h\|^2 \le \frac{1}{2 \epsilon}\left[\|\nabla \eta_t\|_{-1}^2
+ \left( Re^{-2} + Ro^{-2} \Gamma_2^2 \right) \|\Delta \eta\|^2\right] \\
& + \frac{\Gamma_1^2}{4\epsilon}\|\Delta \eta\|^2 \|\Delta \psi\|^2
+ C^*_1(\Gamma_3,\epsilon) \|\Delta \psi\|^4 \|\nabla \Phi^h\|^2
+ b(\psi^h;\eta,\Phi^h).
\end{split}
\label{eqn:B2Inequality}
\end{equation}
For the final term involving $b(\psi^h; \eta, \Phi^h)$ we use inequality
\eqref{eqn:BH1BoundPsi} and the Young inequality, \eqref{eqn:Young} with
$\varepsilon = 2 \epsilon$, i.e.
\begin{align}
b(\psi^h; \eta, \Phi^h) &\le \Gamma_4\left(\|\nabla \psi^h\|^{\nicefrac{1}{2}}
\|\Delta \psi^h\|^{\nicefrac{1}{2}}\right) \|\Delta \eta\|\,
\|\Delta \Phi^h\| \nonumber \\
&\le \epsilon \|\Delta \Phi^h\|^2 + \frac{\Gamma_4^2}{4\epsilon}
\|\nabla \psi^h\|\, \|\Delta \eta\|^2. \label{eqn:YoungPhih}
\end{align}
By the stability estimate in \autoref{prop:Stability}, we have
\begin{equation}
\|\nabla \psi^h\| \le C^*_2(F,\psi_0, Re, Ro).
\label{eqn:StabilityBoundPsih}
\end{equation}
Using \eqref{eqn:StabilityBoundPsih}, estimate \eqref{eqn:YoungPhih} becomes
\begin{equation}
b(\psi^h; \eta, \Phi^h) \le \epsilon \|\Delta \Phi^h\|^2 +
\frac{\Gamma_4^2}{4\epsilon} C^*_2(F,\psi_0,Re,Ro) \|\Delta \psi^h\|\,
\|\Delta \eta\|^2.
\label{eqn:bPsihbound}
\end{equation}
Combining \eqref{eqn:B2Inequality} and \eqref{eqn:bPsihbound} gives
\begin{equation}
\begin{split}
\frac{1}{2} \frac{d}{dt} \|\nabla \Phi^h\|^2 + &\frac{1}{2}\left(2Re^{-1} -
9 \epsilon \right)
\|\Delta \Phi^h\|^2 \le \frac{1}{2 \epsilon}\left[\|\nabla \eta_t\|_{-1}^2
+ \left( Re^{-2} + Ro^{-2} \Gamma_2^2 \right) \|\Delta \eta\|^2\right] \\
& + \frac{\Gamma_1^2}{4 \epsilon} \|\Delta \psi\|^2 \|\Delta \eta\|^2
+ \frac{\Gamma_4}{4\epsilon}C^*_2(F,\psi_0,Re,Ro) \|\Delta \psi^h\|\,
\|\Delta \eta\|^2 + C^*_1(\Gamma_3,\epsilon) \|\Delta \psi\|^4 \|\nabla \Phi^h\|^2.
\end{split}
\label{eqn:B3Inequality}
\end{equation}
Take $\epsilon = \nicefrac{Re^{-1}}{9}$ in \eqref{eqn:B3Inequality}.
Letting
$C^*_3(F,\psi_0,Re,Ro,\Gamma_4) = \dfrac{\Gamma_4}{2}\, C^*_2(F,\psi_0,Re,Ro)$,
$C^*_4(Re) = \frac{9}{2} Re$, $C^*_5(Re,\Gamma_3)=\frac{27}{256}\,9^3\,Re^{3}$,
$C^*_6(Re,Ro,\Gamma_2) = Re^{-2} + Ro^{-2}\Gamma_2^2$, and $C^*_7(\Gamma_1) = \dfrac{\Gamma_1^2}{2}$,
we have
\begin{equation}
\begin{split}
\frac{1}{2} \frac{d}{dt} &\|\nabla \Phi^h\|^2
+ \frac{Re^{-1}}{2} \|\Delta \Phi^h\|^2
\le C^*_4(Re) \biggl[\|\nabla \eta_t\|_{-1}^2
+ C^*_6(Re, Ro,\Gamma_2) \|\Delta \eta\|^2 \\
& + C^*_7(\Gamma_1)\, \|\Delta \psi\|^2 \|\Delta \eta\|^2
+ C^*_3(F,\psi_0,Re,Ro,\Gamma_4) \|\Delta \psi^h\|\,
\|\Delta \eta\|^2\biggr] + C^*_5(Re,\Gamma_3) \|\Delta \psi\|^4 \|\nabla \Phi^h\|^2.
\end{split}
\label{eqn:NoEps}
\end{equation}
Let $a(t):= 2\,C^*_5(Re,\Gamma_3) \|\Delta \psi\|^4$ and
\begin{equation}
A(t) := \int_{0}^{t}\! a(t')\, dt' < \infty.
\label{eqn:L4Bound}
\end{equation}
Multiplying \eqref{eqn:NoEps} by the integrating factor $e^{-A(t)}$, we get
\begin{align*}
\biggl\{ \frac{d}{dt}\left[\|\nabla \Phi^h\|^2\right]
&- 2\, C^*_5(Re,\Gamma_3) \|\Delta \psi\|^4 \|\nabla \Phi^h\|^2\biggr\} e^{-A(t)}
+ Re^{-1} \|\Delta \Phi^h\|^2 e^{-A(t)} \\
& \le 2\, C^*_4(Re) \biggl[\|\nabla \eta_t\|_{-1}^2
+ C^*_6(Re,Ro,\Gamma_2) \|\Delta \eta\|^2 + C^*_7(\Gamma_1)\,
\|\Delta \psi\|^2 \|\Delta \eta\|^2 \\
& \qquad+ C^*_3(F,\psi_0,Re,Ro,\Gamma_4) \|\Delta \psi^h\|\, \|\Delta
\eta\|^2\biggr] e^{-A(t)},
\end{align*}
which can also be written as
\begin{align*}
\biggl\{ e^{-A(t)}\frac{d}{dt}
& \left[\|\nabla \Phi^h\|^2\right]
- \frac{d}{dt}\bigl[ A(t)\bigr] e^{-A(t)} \|\nabla \Phi^h\|^2\biggr\}
+ Re^{-1} \|\Delta \Phi^h\|^2 e^{-A(t)} \\
& \le 2\,C^*_4(Re) \biggl[\|\nabla \eta_t\|_{-1}^2
+ C^*_6(Re,Ro,\Gamma_2) \|\Delta \eta\|^2 + C^*_7(\Gamma_1)\,
\|\Delta \psi\|^2 \|\Delta \eta\|^2 \\
&\qquad + C^*_3(F,\psi_0,Re,Ro,\Gamma_4) \|\Delta \psi^h\|\, \|\Delta
\eta\|^2\biggr] e^{-A(t)},
\end{align*}
and simplifies to
\begin{align*}
\frac{d}{dt}\bigl[e^{-A(t)} &\|\nabla \Phi^h\|^2\bigr]
+ Re^{-1} \|\Delta \Phi^h\|^2 e^{-A(t)} \\
& \le 2\, C^*_4(Re) \biggl[\|\nabla \eta_t\|_{-1}^2
+ C^*_6(Re,Ro,\Gamma_2) \|\Delta \eta\|^2 + C^*_7(\Gamma_1)\,
\|\Delta \psi\|^2 \|\Delta \eta\|^2 \\
&\qquad + C^*_3(F,\psi_0,Re,Ro,\Gamma_4)\, \|\Delta \psi^h\|\,
\|\Delta \eta\|^2\biggr] e^{-A(t)},
\end{align*}
Now, integrating over $[0,T]$ and multiplying by $e^{A(T)}$ gives
\begin{equation}
\begin{split}
\|\nabla \Phi^h(T)\|^2 + Re^{-1} \int_0^T\! &\|\Delta \Phi^h\|^2
e^{A(T) - A(t)}\, dt \le e^{A(T) - A(0)} \|\nabla \Phi^h(0)\|^2 \\
& + 2\, C^*_4(Re)\biggl[ \int_0^T\! \|\nabla \eta_t\|_{-1}^2
+ C^*_6(Re,Ro,\Gamma_2) \|\Delta \eta\|^2 e^{A(T) - A(t)}\, dt \\
& + \int_0^T\! \left( C^*_7(\Gamma_1)\, \|\Delta \psi\|^2
+ C^*_3(F,\psi_0,Re,Ro,\Gamma_4)\,\|\Delta \psi^h\|\right)
\|\Delta \eta\|^2 e^{A(T) - A(t)}\, dt\biggr].
\end{split}
\label{eqn:IntegratedInequality}
\end{equation}
Noting that $e^{A(T) - A(t)} \ge 1$, $e^{A(T) - A(t)} \le e^{A(T)}$, and
$A(0) = 0$, \eqref{eqn:IntegratedInequality} becomes
\begin{equation}
\begin{split}
\|\nabla \Phi^h(T)\|^2 + Re^{-1} \int_0^T\! \|\Delta \Phi^h\|^2 &\, dt
\le C^*_8(T,Re,\Gamma_3) \|\nabla \Phi^h(0)\|^2 \\
& + C^*_9(T,Re,\Gamma_3)\biggl[ \int_0^T\! \|\nabla \eta_t\|_{-1}^2
+ C^*_6(Re,Ro,\Gamma_2) \|\Delta \eta\|^2\, dt \\
& + \int_0^T\! \left( C_7(\Gamma_1)\, \|\Delta \psi\|^2
+ C^*_3(F,\psi_0,Re,Ro,\Gamma_4)\,\|\Delta \psi^h\|\right)
\|\Delta \eta\|^2\, dt\biggr],
\end{split} \label{eqn:CTREInequality}
\end{equation}
where
\begin{align}
C^*_8(T,Re,\Gamma_3) &= \exp\!\left(2\,\dfrac{27}{256}\, 9^3\, Re^3\,
\Gamma_3^4\, \int_{0}^{T}\!\|\Delta \psi\|^4\, dt\right), \label{eqn:C1TRe} \\
C^*_9(T,Re,\Gamma_3) &= 9 Re\, \exp\!\left(2\,\dfrac{27}{256}\, 9^3\, Re^3\,
\gamma_3^4\, \int_{0}^{T}\!\|\Delta \psi\|^4\, dt\right). \label{eqn:C2TRe}
\end{align}
By the H\"older inequality, \eqref{eqn:Holder} we have
\begin{align}
\int_0^T\! \|\Delta \psi^h\| \|\Delta \eta\|^2\, dt &\le
\|\Delta \psi^h\|^2_{L^2(0,T;L^2)} \|\Delta \eta\|^2_{L^4(0,T;L^2)},
\label{eqn:HolderPsih} \\
\int_0^T\! \|\Delta \psi\|^2 \|\Delta \eta\|^2\, dt &\le
\|\Delta \psi^h\|^2_{L^4(0,T;L^2)} \|\Delta \eta\|^2_{L^4(0,T;L^2)}.
\label{eqn:HolderPsi}
\end{align}
Note that $\|\Delta \psi^h\|_{L^2(0,T;L^2)}\le C^*_{10}(Re,Ro,F)$ from the
stability bound (\autoref{prop:Stability}), while $\|\Delta
\psi\|_{L^4(0,T;L^2)}\le C^*_{11}(\|\Delta \psi \|_{L^4(0,T;L^2)})$ by hypothesis. Thus, \eqref{eqn:CTREInequality}
can be written as
\begin{align*}
\|\nabla \Phi^h\|^2 + Re^{-1} \int_0^T\! \|\Delta \Phi^h\|^2\, dt
& \le C^*_8(T,Re,\Gamma_3) \|\nabla \Phi^h(0)\|^2 \\
& + C^*_9(T,Re,\Gamma_3)\biggl[ \int_0^T\! \|\nabla \eta_t\|_{-1}^2
+ C^*_6(Re,Ro,\Gamma_2) \|\Delta \eta\|^2\, dt \\
& +\bigl(C^*_7(\Gamma_1)\,C^*_{11}(\|\Delta \psi \|_{L^4(0,T;L^2)}) \\
& + C^*_3(F,\psi_0,Re,Ro,\Gamma_4)\,C^*_{10}(Re,Ro,F)\bigr)
\|\Delta \eta\|^2_{L^4(0,T;L^2)}\biggr].
\end{align*}
\begin{remark}
We note that the stability bound in \autoref{prop:Stability} does not
provide an estimate for $\|\Delta \psi^h\|_{L^4(0,T;L^2)}$. This was the
reasoning for treating the nonlinear terms $b(\eta;\psi,\Phi^h)$ and
$b(\psi^h;\eta,\Phi^h)$ in \eqref{eqn:HolderError} differently.
\end{remark}
Now adding $\|\nabla \eta(T)\|^2$ and $Re^{-1} \int_0^T\! \|\Delta \eta\|^2\,
dt$ to both sides and using the triangle inequality gives
\begin{equation}
\begin{split}
\frac{1}{2} \|\nabla \biggl( \psi &- \psi^h\biggr)(T) \|^2
+ \frac{Re^{-1}}{2} \int_0^T\! \|\Delta \left(\psi - \psi^h\right)\|^2\, dt
\le C^*_8(T,Re,\Gamma_3) \|\nabla \Phi^h(0)\|^2 \\
& + C^*_9(T,Re,\Gamma_3) \int_0^T\! \|\nabla \left( \psi - \lambda^h\right)_t\|_{-1}^2
+ \bigl(1 + C^*_6(Re,Ro,\Gamma_2)\bigr)
\|\Delta \left(\psi - \lambda^h\right)\|^2\, dt \\
& + \bigl(C^*_7(\Gamma_1)\, C^*_{11}(\|\Delta \psi \|_{L^4(0,T;L^2)}) \\
& + C^*_3(F,\psi_0,Re,Ro,\Gamma_4)\,C^*_{10}(Re,Ro,F)\bigr)
\|\Delta \left(\psi - \lambda^h\right)\|^2_{L^4(0,T;L^2)} \\
& + \|\nabla \left(\psi - \lambda^h\right)(T)\|^2.
\end{split}
\label{eqn:TriangleIneq1}
\end{equation}
By the triangle inequality we have $2\, \|\nabla e(0)\|^2 \ge \|\nabla
\Phi^h(0)\|^2 + \|\nabla \eta(0)\|^2$, therefore adding
$C_8^*(T,Re,\Gamma_3)\,\|\nabla \eta(0)\|^2$ to the right hand side of
\eqref{eqn:TriangleIneq1} and using the triangle inequality gives
\begin{equation}
\begin{split}
\frac{1}{2} \|\nabla \biggl( \psi &- \psi^h\biggr)(T) \|^2
+ \frac{Re^{-1}}{2} \int_0^T\! \|\Delta \left(\psi - \psi^h\right)\|^2\, dt
\le 2\,C^*_8(T,Re,\Gamma_3) \|\nabla e(0)\|^2 \\
& + C^*_9(T,Re,\Gamma_3) \int_0^T\! \|\nabla \left( \psi - \lambda^h\right)_t\|_{-1}^2
+ \bigl(1 + C^*_6(Re,Ro,\Gamma_2)\bigr)
\|\Delta \left(\psi - \lambda^h\right)\|^2\, dt \\
& + \bigl(C^*_7(\Gamma_1)\, C^*_{11}(\|\Delta \psi \|_{L^4(0,T;L^2)}) \\
& + C^*_3(F,\psi_0,Re,Ro,\Gamma_4)\,C^*_{10}(Re,Ro,F)\bigr)
\|\Delta \left(\psi - \lambda^h\right)\|^2_{L^4(0,T;L^2)} \\
& + \|\nabla \left(\psi - \lambda^h\right)(T)\|^2.
\end{split}
\label{eqn:TriangleIneq2}
\end{equation}
Finally, taking $\inf_{\lambda^h \in X^h}$ of both sides of
\eqref{eqn:TriangleIneq2} and letting
\begin{align*}
C_1(T,Re,\Gamma_3) &= 4\, C^*_8(T,Re,\Gamma_3) \\
C_2(T,Re,\Gamma_3) &= 2\, C^*_9(T,Re,\Gamma_3) \\
C_3(Re,Ro,\Gamma_2) &= 2 + 2\,C^*_6(Re,Ro,\Gamma_2) \\
C_4(T,F,\psi_0,Re,Ro,\Gamma_1,\Gamma_3,\Gamma_4,
\|\Delta \psi\|_{L^4(0,T;L^2)}) &= 2\, C^*_9(T,Re,\Gamma_3) \\
\biggl(C^*_7(\Gamma_1)\, C^*_{11}(\|\Delta \psi\|_{L^4(0,T;L^2)})
&+ C^*_3(F,\psi_0,Re,Ro,\Gamma_4)\, C^*_{10}(F,\psi_0,Re,Ro)\biggr)
\end{align*}
gives
\begin{align*}
\|\nabla \left( \psi - \psi^h\right)(T) \|^2
&+ Re^{-1} \int_0^T\! \|\Delta \left(\psi - \psi^h\right)\|^2\, dt
\le C_1(T,Re,\Gamma_3)\biggl\|\nabla\left[\psi - \psi^h\right](0)\biggr\|^2 \\
& + \inf_{\lambda^h \in X^h} \biggl\{C_2(T,Re,\Gamma_3)
\int_0^T\! \biggl\|\nabla \left( \psi - \lambda^h\right)_t\biggr\|_{-1}^2
+ C_3(Re,Ro,\Gamma_2)\,\biggl\|\Delta \left(\psi -
\lambda^h\right)\biggr\|^2\, dt \\
& + C_4(T,F,\psi_0,Re,Ro,\Gamma_1,\Gamma_3,\Gamma_4,\|\Delta
\psi\|_{L^4(0,T;L^2)})\, \biggl\|\Delta \left(\psi -
\lambda^h\right)\biggr\|^2_{L^4(0,T;L^2)} \\
& + 2\, \|\nabla \left(\psi - \lambda^h\right)(T)\|^2\biggr\},
\end{align*}
which is the desired result.
\end{proof}
Next we determine the FE rates of convergence yielded by the error estimate
\eqref{eqn:SemiConvergence} in \autoref{thm:SemiConvergence}. The following
lemma will allow for the determination of FE convergence rates in the terms
involving $\frac{\partial}{\partial t}$ in the error estimate
\eqref{eqn:SemiConvergence}.
\begin{lemma} \label{lma:Interpolation}
Suppose the nodes $N_j$ of the finite element mesh do not move. Let
$X^h\subset X$, consisting of Argyris elements and $I^h$ the
associated $\mathbb{P}^5$-interpolation operator (see Theorem 6.1.1 in
\cite{Ciarlet}). Then, assuming that $\psi, \psi_t \in H^6$, we have
\begin{align}
\frac{\partial}{\partial t}\left( I^h \psi \right) &=
I^h \left( \frac{\partial \psi}{\partial t}\right), \label{eqn:dInterp} \\
\left\|\frac{\partial \left[\nabla \psi\right]}{\partial t}
- \frac{\partial}{\partial t} \nabla \left(I^h \psi\right)\right\|
&\le C\, h^5\, \left|\frac{\partial \psi}{\partial t}\right|_6,
\text{ and } \label{eqn:dH1} \\
\left\|\frac{\partial \left[\nabla \psi\right]}{\partial t}
- \frac{\partial}{\partial t} \nabla \left(I^h \psi\right)\right\|_{-1}
&\le C\, h^5\, \left|\frac{\partial \psi}{\partial t}\right|_6. \label{eqn:dH-1}
\end{align}
\begin{remark} \label{rmk:H6imbedC1}
Estimate (32) in Theorem 6 in Section 5.7 of \cite{Evans1989}
shows that $H^6 \hookrightarrow C^1$. Thus, the interpolation operator $I^h$
can be applied to $\psi$ and $\psi_t$.
\end{remark}
\end{lemma}
\begin{proof}
Equation \eqref{eqn:dInterp} follows from the explicit formulas for the
$\mathbb{P}^5$ interpolant, $I^h$ (see Ciarlet \cite{Ciarlet}), estimate
\eqref{eqn:dH1} follows from a combination of \eqref{eqn:dInterp} and
estimate (6.1.9) in Theorem 6.1.1 in \cite{Ciarlet} with $p=q=2$ and $m=1$.
Finally, estimate \eqref{eqn:dH-1} follows from the fact that $\|\cdot\|_{-1}
\le \|\cdot\|$.
\end{proof}
\begin{lemma} \label{lma:IntegralErrors}
Let $X^h$ denote the FE space associated with the Argyris element. Suppose
that the interpolation estimates from \autoref{lma:Interpolation} hold and
that $\psi, \psi_t \in H^6(\Omega)$. Then,
\begin{equation}
\int_{0}^{T}\! \|\nabla \left(\psi - I^h \psi\right)_t\|_{-1}^2 + \|\Delta
\left(\psi - I^h \psi\right) \|^2\, dt \le C\, h^8
\int_{0}^{T}\! h^2 \,|\psi_t|_6^2 + |\psi|_6^2\, dt
\label{eqn:IntegralErrors}
\end{equation}
and
\begin{equation}
\|\Delta\left( \psi- I^h \psi\right)\|_{L^4(0,T; L^2(\Omega)}^2 \le C h^8
|\psi|_{L^4(0,T;H^6(\Omega))}^2. \label{eqn:L4Interpolation}
\end{equation}
\end{lemma}
\begin{proof}
At each time instance we see from inequality (6.1.9) in \cite{Ciarlet} that
$\|\Delta\left(\psi - I^h \psi\right)\| \le C\, h^4\, |\psi|_6$. Squaring and
integrating this and using the interpolation error bounds from
\autoref{lma:Interpolation} gives the first estimate. The second estimate
follows analogously, i.e.
\begin{align*}
\|\Delta \left(\psi - I^h \psi\right)\|_{L^4(0,T;L^2(\Omega))}
&= \left(\int_{0}^{T}\! \|\Delta\left(\psi - I^h \psi\right)\|^4\, dt
\right)^{\frac{1}{4}} \\
&\le C\, h^4 \left(\int_{0}^{T}\! |\psi|_6^4\, dt\right)^{\frac{1}{4}},
\end{align*}
which leads to the desired estimate $\|\Delta\left(\psi - I^h
\psi\right)\|_{L^4(0,T;L^2(\Omega))}^2 \le C\, h^8
\|\psi\|_{L^4(0,T;H^6(\Omega))}^2$.
\end{proof}
\begin{thm} \label{thm:SemiInterp}
Let $X^h$ be the FE space associated with the Argyris element and
an $I^h$ the associated $\mathbb{P}^5$-interpolation operator (see Theorem
6.1.1 in \cite{Ciarlet}). Suppose the interpolation estimates from
\autoref{lma:Interpolation} hold and that $\psi, \psi_t \in H^6(\Omega)$.
Suppose also that the assumptions of \autoref{thm:SemiConvergence} hold.
Then,
\begin{equation}
\begin{split}
\|\nabla \left( \psi - \psi^h\right)&(T) \|^2
+ Re^{-1} \int_0^T\! \|\Delta \left(\psi - \psi^h\right)\|^2\, dt
\le h^8\, C\, \biggl\{
\left(C_1(T,Re,\Gamma_3) + 2\right)\, h^2\, |\psi|_6^2 \\
& + C_2(T,Re,\Gamma_3) \left( h^2\,\|\psi_t\|_{L^2(0,T;H^6(\Omega))}^2
+ C_3(Re,Ro,\Gamma_2)\,\|\psi\|_{L^2(0,T;H^6(\Omega))}^2\right) \\
& +
C_4(T,F,\psi_0,Re,Ro,\Gamma_1,\Gamma_3,\Gamma_4,\|\psi\|_{L^4(0,T;L^2)})\,
\|\psi\|_{L^4(0,T;H^6(\Omega))}^2 \biggr\}.
\end{split}
\label{eqn:SemiInterp}
\end{equation}
\end{thm}
\begin{proof}
The proof follows from \autoref{thm:SemiConvergence},
\autoref{lma:Interpolation}, and \autoref{lma:IntegralErrors}.
\end{proof}