-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathbenchmarks.py
258 lines (169 loc) · 5.03 KB
/
benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
# Write the benchmarking functions here.
# See "Writing benchmarks" in the asv docs for more information.
'''
class TimeSuite:
"""
An example benchmark that times the performance of various kinds
of iterating over dictionaries in Python.
"""
def setup(self):
self.d = {}
for x in range(500):
self.d[x] = None
def time_keys(self):
for key in self.d.keys():
pass
def time_values(self):
for value in self.d.values():
pass
def time_range(self):
d = self.d
for key in range(500):
d[key]
class MemSuite:
def mem_list(self):
return [0] * 256
'''
import numpy as np
from openblas_wrap import (
# level 1
dnrm2, ddot, daxpy,
# level 3
dgemm, dsyrk,
# lapack
dgesv, # linalg.solve
dgesdd, dgesdd_lwork, # linalg.svd
dsyev, dsyev_lwork, # linalg.eigh
)
# ### BLAS level 1 ###
# dnrm2
dnrm2_sizes = [100, 1000]
def run_dnrm2(n, x, incx):
res = dnrm2(x, n, incx=incx)
return res
class Nrm2:
params = [100, 1000]
param_names = ["size"]
def setup(self, n):
rndm = np.random.RandomState(1234)
self.x = rndm.uniform(size=(n,)).astype(float)
def time_dnrm2(self, n):
run_dnrm2(n, self.x, 1)
# ddot
ddot_sizes = [100, 1000]
def run_ddot(x, y,):
res = ddot(x, y)
return res
class DDot:
params = ddot_sizes
param_names = ["size"]
def setup(self, n):
rndm = np.random.RandomState(1234)
self.x = np.array(rndm.uniform(size=(n,)), dtype=float)
self.y = np.array(rndm.uniform(size=(n,)), dtype=float)
def time_ddot(self, n):
run_ddot(self.x, self.y)
# daxpy
daxpy_sizes = [100, 1000]
def run_daxpy(x, y,):
res = daxpy(x, y, a=2.0)
return res
class Daxpy:
params = daxpy_sizes
param_names = ["size"]
def setup(self, n):
rndm = np.random.RandomState(1234)
self.x = np.array(rndm.uniform(size=(n,)), dtype=float)
self.y = np.array(rndm.uniform(size=(n,)), dtype=float)
def time_daxpy(self, n):
run_daxpy(self.x, self.y)
# ### BLAS level 3 ###
# dgemm
gemm_sizes = [100, 1000]
def run_dgemm(a, b, c):
alpha = 1.0
res = dgemm(alpha, a, b, c=c, overwrite_c=True)
return res
class Dgemm:
params = gemm_sizes
param_names = ["size"]
def setup(self, n):
rndm = np.random.RandomState(1234)
self.a = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
self.b = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
self.c = np.empty((n, n), dtype=float, order='F')
def time_dgemm(self, n):
run_dgemm(self.a, self.b, self.c)
# dsyrk
syrk_sizes = [100, 1000]
def run_dsyrk(a, c):
res = dsyrk(1.0, a, c=c, overwrite_c=True)
return res
class DSyrk:
params = syrk_sizes
param_names = ["size"]
def setup(self, n):
rndm = np.random.RandomState(1234)
self.a = np.array(rndm.uniform(size=(n, n)), dtype=float, order='F')
self.c = np.empty((n, n), dtype=float, order='F')
def time_dsyrk(self, n):
run_dsyrk(self.a, self.c)
# ### LAPACK ###
# linalg.solve
dgesv_sizes = [100, 1000]
def run_dgesv(a, b):
res = dgesv(a, b, overwrite_a=True, overwrite_b=True)
return res
class Dgesv:
params = dgesv_sizes
param_names = ["size"]
def setup(self, n):
rndm = np.random.RandomState(1234)
self.a = (np.array(rndm.uniform(size=(n, n)), dtype=float, order='F') +
np.eye(n, order='F'))
self.b = np.array(rndm.uniform(size=(n, 1)), order='F')
def time_dgesv(self, n):
run_dgesv(self.a, self.b)
# XXX: how to run asserts?
# lu, piv, x, info = benchmark(run_gesv, a, b)
# assert lu is a
# assert x is b
# assert info == 0
# linalg.svd
dgesdd_sizes = ["100, 5", "1000, 222"]
def run_dgesdd(a, lwork):
res = dgesdd(a, lwork=lwork, full_matrices=False, overwrite_a=False)
return res
class Dgesdd:
params = dgesdd_sizes
param_names = ["(m, n)"]
def setup(self, mn):
m, n = (int(x) for x in mn.split(","))
rndm = np.random.RandomState(1234)
a = np.array(rndm.uniform(size=(m, n)), dtype=float, order='F')
lwork, info = dgesdd_lwork(m, n)
lwork = int(lwork)
assert info == 0
self.a, self.lwork = a, lwork
def time_dgesdd(self, mn):
run_dgesdd(self.a, self.lwork)
# linalg.eigh
dsyev_sizes = [50, 200]
def run_dsyev(a, lwork):
res = dsyev(a, lwork=lwork, overwrite_a=True)
return res
class Dsyev:
params = dsyev_sizes
param_names = ["size"]
def setup(self, n):
rndm = np.random.RandomState(1234)
a = rndm.uniform(size=(n, n))
a = np.asarray(a + a.T, dtype=float, order='F')
a_ = a.copy()
lwork, info = dsyev_lwork(n)
lwork = int(lwork)
assert info == 0
self.a = a_
self.lwork = lwork
def time_dsyev(self, n):
run_dsyev(self.a, self.lwork)