-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy path0_prep.R
209 lines (153 loc) · 5.25 KB
/
0_prep.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
# Shinyfit data preparation
## Read your data to the object `alldata`
## Work down script to prepare data object
## This is mostly about choosing variable names for menus
## Ensure numeric and factor variables are specified appropriately
# Dataset 1 ------------------------------
# Provide data to app
library(finalfit)
library(dplyr)
library(forcats)
# colon_s example
# Read data to "alldata"
alldata = finalfit::colon_s
# Display variable names
names(alldata)
# Select subset of variables to keep
alldata = alldata %>%
dplyr::select(8:9, 14:23, 25, 27, 29, 32)
# View dataset
ff_glimpse(alldata)
# Add variable labels if wish
## e.g.
alldata$nodes %<>% ff_label("Lymph node number")
# Recode factor levels if wish
# alldata %<>%
# mutate(
# var1 =
# forcats::fct_recode(var1,
# "New level 1" = "Old level 1",
# "New level 2" = "Old level 2"
# )
# )
# Extract variable names and labels.
alldata_names = names(alldata)
names(alldata_names) = extract_variable_label(alldata)
# Arrange variable names for purposes of dropdown display
matrix(alldata_names)
# Choose how to arrange the above list (order respected):
alldata_names_list = list(Outcomes = alldata_names[c(15, 2, 3)],
Explanatory = alldata_names[c(13, 4:12, 1, 14)],
Groups = alldata_names[16]
)
# Remove outcomes from explanatory list
alldata_names_list_explanatory = alldata_names_list[-1]
# Create lookup table of names
alldata_names_lookup = extract_labels(alldata)
# Create list for subsetting data, this is limited to factors
alldata %>%
dplyr::select_if(is.factor) -> alldata_subset
alldata_subset_names = names(alldata_subset)
names(alldata_subset_names) = extract_variable_label(alldata_subset)
rm(alldata_subset)
# SUBSETING: Arrange variable names for dropdown list
matrix(alldata_subset_names)
# Choose how to arrange the above list:
alldata_subset_names_list = list(Outcomes = alldata_subset_names[c(12)],
Explanatory = alldata_subset_names[c(10,1,2:9)],
Groups = alldata_subset_names[13]
)
rm(alldata_subset_names)
# Name project
shinyfit_name = "Colon dataset"
dataset_label = "colon_s"
# Make final list for app
alldata_list = list(alldata=alldata,
alldata_names = alldata_names,
alldata_names_list=alldata_names_list,
alldata_names_list_explanatory=alldata_names_list_explanatory,
alldata_names_lookup=alldata_names_lookup,
alldata_subset_names_list=alldata_subset_names_list,
shinyfit_name=shinyfit_name,
dataset_label=dataset_label)
class(alldata_list) = "shinyfit"
save(alldata_list, file="data/alldata.rda")
# Clear workspace
rm(list=ls())
# Dataset 2-------------------------------
# Provide data to app
library(finalfit)
library(dplyr)
library(forcats)
# Melanoma example
# Read data to "alldata"
alldata = boot::melanoma
# Display variable names
names(alldata)
# Select subset of variables to keep
alldata = alldata %>%
dplyr::select(1:7)
# Recode factor levels if necessary
alldata %<>%
mutate(
sex = factor(sex) %>%
fct_recode(Male = "1",
Female = "0"),
ulcer = factor(ulcer) %>%
fct_recode(Yes = "1",
No = "0")
)
# Add variable labels if wish
alldata$time %<>% ff_label("Time since operation (days)")
alldata$status %<>% ff_label("Status")
alldata$sex %<>% ff_label("Sex")
alldata$age %<>% ff_label("Age (years)")
alldata$year %<>% ff_label("Year of operation")
alldata$thickness %<>% ff_label("Thickness (mm)")
alldata$ulcer %<>% ff_label("Ulcer")
# View dataset
ff_glimpse(alldata)
# Extract variable names and labels.
alldata_names = names(alldata)
names(alldata_names) = extract_variable_label(alldata)
# Arrange variable names for purposes of dropdown display
matrix(alldata_names)
# Choose how to arrange the above list:
alldata_names_list = list(Outcomes = alldata_names[c(1, 2)],
Explanatory = alldata_names[c(3:7)],
Groups = ""
)
# Remove outcomes from explanatory list
alldata_names_list_explanatory = alldata_names_list[-1]
# Create lookup table of names (required)
alldata_names_lookup = extract_labels(alldata)
# Create list for subsetting data, this is limited to factors
alldata %>%
dplyr::select_if(is.factor) -> alldata_subset
alldata_subset_names = names(alldata_subset)
names(alldata_subset_names) = extract_variable_label(alldata_subset)
rm(alldata_subset)
# Arrange variable names for SUBSET dropdown list
matrix(alldata_subset_names)
# Choose how to arrange the above list:
alldata_subset_names_list = list(#Outcomes = "",
Explanatory = alldata_subset_names[c(1,2)]#,
#Groups = ""
)
rm(alldata_subset_names)
# Name project
shinyfit_name = "Melanoma survival dataset"
dataset_label = "melanoma"
# Make final list for app
alldata_list = list(alldata=alldata,
alldata_names = alldata_names,
alldata_names_list=alldata_names_list,
alldata_names_list_explanatory=alldata_names_list_explanatory,
alldata_names_lookup=alldata_names_lookup,
alldata_subset_names_list=alldata_subset_names_list,
shinyfit_name=shinyfit_name,
dataset_label=dataset_label)
class(alldata_list) = "shinyfit"
save(alldata_list, file="data/alldata.rda")
# Clear workspace prior to assembling second dataset
rm(list=ls())