-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_transformer.py
217 lines (193 loc) · 9.25 KB
/
train_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
import os
import cv2
import random
import numpy as np
import torch
import argparse
from shutil import copyfile
from utils.utils import Config, Progbar, to_cuda, postprocess, stitch_images
from utils.logger import setup_logger
from torch.utils.data import DataLoader
from src.dataloader_face import FaceDataset
from src.transformer_models import GETransformer
import time
from tqdm import tqdm
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--path', type=str, required=True, help='model checkpoints path')
parser.add_argument('--gpu', type=str, required=True, help='gpu ids')
parser.add_argument('--sketch_model_path', type=str, required=True, help='Sketch vqvae weights')
parser.add_argument('--image_model_path', type=str, required=True, help='Image vqvae weights')
parser.add_argument('--config_path', type=str, required=True, help='model config path')
parser.add_argument('--max_iters', type=int, default=300000, required=False,
help='max train steps, transformer 300k')
parser.add_argument('--learning_rate', type=float, default=5e-5, required=False, help='learning rate')
args = parser.parse_args()
args.path = os.path.join('check_points', args.path)
config_path = os.path.join(args.path, 'transformer_config.yml')
# create checkpoints path if does't exist
if not os.path.exists(args.path):
os.makedirs(args.path)
# copy config template if does't exist
if not os.path.exists(config_path):
copyfile(args.config_path, config_path)
# load config file
config = Config(config_path)
config.path = args.path
config.gpu_ids = args.gpu
config.lr = args.learning_rate
config.max_iters = args.max_iters
log_file = 'log-{}.txt'.format(time.time())
logger = setup_logger(os.path.join(args.path, 'logs'), logfile_name=log_file)
for k in config._dict:
logger.info("{}:{}".format(k, config._dict[k]))
# save samples and eval pictures
os.makedirs(os.path.join(args.path, 'samples'), exist_ok=True)
os.makedirs(os.path.join(args.path, 'eval'), exist_ok=True)
# cuda visble devices
os.environ['CUDA_VISIBLE_DEVICES'] = config.gpu_ids
# init device
if torch.cuda.is_available():
config.device = torch.device("cuda")
torch.backends.cudnn.benchmark = True # cudnn auto-tuner
else:
config.device = torch.device("cpu")
n_gpu = torch.cuda.device_count()
# set cv2 running threads to 1 (prevents deadlocks with pytorch dataloader)
cv2.setNumThreads(0)
# initialize random seed
torch.manual_seed(config.seed)
np.random.seed(config.seed)
random.seed(config.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(config.seed)
# load dataset
train_list = config.data_flist[config.dataset]['train']
val_list = config.data_flist[config.dataset]['val']
sketch_train_list = config.data_flist[config.dataset]['train_cond']
sketch_val_list = config.data_flist[config.dataset]['val_cond']
eval_path = config.data_flist[config.dataset]['test']
fixed_mask_path = config.data_flist[config.dataset]['test_mask']
irr_path = config.irr_path
seg_path = config.seg_path
train_dataset = FaceDataset(config, train_list, skflist=sketch_train_list,
irr_mask_path=irr_path, seg_mask_path=seg_path, training=True)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=config.batch_size,
num_workers=8,
drop_last=True,
shuffle=True
)
val_dataset = FaceDataset(config, val_list, skflist=sketch_val_list,
fix_mask_path=fixed_mask_path, training=False)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=config.batch_size,
num_workers=2,
drop_last=False,
shuffle=False
)
sample_iterator = val_dataset.create_iterator(config.sample_size)
model = GETransformer(config, args.sketch_model_path, args.image_model_path, logger=logger)
model.load(is_test=False)
model.restore_from_stage1()
steps_per_epoch = len(train_dataset) // config.batch_size
iteration = model.iteration
epoch = model.iteration // steps_per_epoch
logger.info('Start from epoch:{}, iteration:{}'.format(epoch, iteration))
model.train()
keep_training = True
best_score = {}
# make some AR samples randomly
if config.lm_rate > 0:
lm_size = int(config.batch_size * config.lm_rate)
mc = [1] * lm_size + [0] * (config.batch_size - lm_size)
else:
mc = None
while (keep_training):
epoch += 1
stateful_metrics = ['epoch', 'iter', 'lr']
progbar = Progbar(len(train_dataset), max_iters=steps_per_epoch,
width=20, stateful_metrics=stateful_metrics)
for items in train_loader:
model.train()
items = to_cuda(items, config.device)
if config.lm_rate > 0:
random.shuffle(mc)
items['mc'] = torch.tensor(mc).to(config.device)
else:
items['mc'] = None
# if lm_rate=1 means that all targets are masked (AR)
if config.lm_rate == 1:
items['mask'] = torch.ones_like(items['mask'])
loss, logs = model.get_losses(items)
model.backward(loss)
iteration = model.iteration
logs = [("epoch", epoch), ("iter", iteration), ('lr', model.sche.get_lr()[0])] + logs
progbar.add(config.batch_size, values=logs)
if iteration % config.log_iters == 0:
logger.debug(str(logs))
if iteration % config.sample_iters == 0:
model.eval()
with torch.no_grad():
items = next(sample_iterator)
items = to_cuda(items, config.device)
# if lm_rate=1 means that all targets are masked (AR)
if config.lm_rate == 1:
items['mask'] = torch.ones_like(items['mask'])
fake_imgs = []
fake_imgs_sampled = []
for i in tqdm(range(items['img'].shape[0])):
fake_img = model.sample(items['img'][i:i + 1],
items['sketch'][i:i + 1],
items['mask'][i:i + 1],
temperature=config.temperature,
greed=True, top_k=None)
fake_img_sampled = model.sample(items['img'][i:i + 1],
items['sketch'][i:i + 1],
items['mask'][i:i + 1],
temperature=config.temperature,
greed=False, top_k=config.sample_topk)
fake_imgs.append(fake_img)
fake_imgs_sampled.append(fake_img_sampled)
fake_imgs = torch.cat(fake_imgs, dim=0)
fake_imgs_sampled = torch.cat(fake_imgs_sampled, dim=0)
combined_imgs = items['img'] * (1 - items['mask']) + \
items['sketch'].repeat(1, 3, 1, 1) * items['mask']
show_results = [postprocess(combined_imgs),
postprocess(fake_imgs),
postprocess(fake_imgs_sampled)]
images = stitch_images(postprocess(items['img']), show_results, img_per_row=1)
sample_name = os.path.join(args.path, 'samples', str(iteration).zfill(7) + ".png")
print('\nsaving sample {}\n'.format(sample_name))
images.save(sample_name)
if iteration % config.eval_iters == 0:
model.eval()
eval_progbar = Progbar(len(val_dataset), width=20)
index = 0
# testing perplexity (AR inference is too slow)
ppls = []
with torch.no_grad():
for items in val_loader:
items = to_cuda(items, config.device)
# if lm_rate=1 means that all targets are masked (AR)
if config.lm_rate == 1:
items['mask'] = torch.ones_like(items['mask'])
ppl = model.perplexity(items['img'], items['sketch'], items['mask'])
ppls.append(ppl)
eval_progbar.add(items['img'].shape[0])
mean_ppl = np.mean(ppls)
print('PPL:{}'.format(mean_ppl))
logger.info('PPL:{}'.format(mean_ppl))
if config.save_best:
if 'ppl' not in best_score or mean_ppl <= best_score['ppl']:
best_score['ppl'] = mean_ppl
best_score['iteration'] = iteration
model.save(prefix='best_ppl')
if iteration % config.save_iters == 0:
model.save(prefix='last')
if iteration >= config.max_iters:
keep_training = False
break
logger.info('Best score: ' + str(best_score))