-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathchat_completions.go
185 lines (165 loc) · 8.36 KB
/
chat_completions.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
package openai
import (
"context"
"encoding/json"
"fmt"
"github.com/fabiustech/openai/models"
"github.com/fabiustech/openai/objects"
"github.com/fabiustech/openai/params"
"github.com/fabiustech/openai/routes"
)
// ChatRole is an enum of the various message roles.
type ChatRole string
const (
// System represents a system message, which helps set the behavior of the assistant.
System ChatRole = "system"
// User represents a message from a user, which helps instruct the assistant. They can be generated by the end users
// of an application, or set by a developer as an instruction.
User ChatRole = "user"
// Assistant represents a message from the assistant. Assistant messages help store prior responses. They can also
// be written by a developer to help give examples of desired behavior.
Assistant ChatRole = "assistant"
// RoleFunction represents a call to a function.
RoleFunction ChatRole = "function"
)
// FunctionCallResponse represents a response from a function call.
type FunctionCallResponse struct {
// Name is the name of the function to be called.
Name string `json:"name"`
// Arguments are the arguments to the function call, encoded as a JSON string.
Arguments string `json:"arguments"`
}
// ChatMessage represents a message in a chat completion.
type ChatMessage struct {
Role ChatRole `json:"role"`
Content string `json:"content,omitempty"`
FunctionCall *FunctionCallResponse `json:"function_call,omitempty"`
}
// Unmarshal unmarshals the content of the message into the provided value.
func (c *FunctionCallResponse) Unmarshal(val any) error {
return json.Unmarshal([]byte(c.Arguments), val)
}
// Function is a list of functions the model may generate JSON inputs for.
type Function struct {
// Name is the name of the function to be called. Must be a-z, A-Z, 0-9, or contain underscores and dashes, with a
// maximum length of 64.
Name string `json:"name"`
// Description is the description of what the function does.
Description string `json:"description"`
// Parameters are the parameters the functions accepts, described as a JSON Schema object. See the guide
// (https://platform.openai.com/docs/guides/gpt/function-calling) for examples, and the JSON Schema reference
// (https://json-schema.org/understanding-json-schema/) for documentation about the format.
// TODO: Is there a stronger typed representation of this w/o adding a dependency?
Parameters json.RawMessage `json:"parameters"`
}
// TODO(Andy): Support streaming.
const (
functionCallNone = "none"
functionCallAuto = "auto"
)
// FunctionCall specifies that the model should explicitly call the |Name|d function.
// To specify that the model should not call a function, use FunctionCallNone.
// To specify the default behavior, use FunctionCallAuto.
type FunctionCall struct {
Name string `json:"name"`
returnString *string
}
// MarshalJSON implements json.Marshaler.
func (f *FunctionCall) MarshalJSON() ([]byte, error) {
if f.returnString != nil {
return []byte(fmt.Sprintf(`"%s"`, *f.returnString)), nil
}
return json.Marshal(struct {
Name string `json:"name"`
}{
Name: f.Name,
})
}
// FunctionCallNone returns a FunctionCall which will specify that no function should be called.
func FunctionCallNone() *FunctionCall {
return &FunctionCall{returnString: params.Optional(functionCallNone)}
}
// FunctionCallAuto returns a FunctionCall which will specify that the model should pick between an end-user or
// calling a function.
func FunctionCallAuto() *FunctionCall {
return &FunctionCall{returnString: params.Optional(functionCallAuto)}
}
// ChatCompletionRequest contains all relevant fields for requests to the chat completions endpoint.
type ChatCompletionRequest struct {
// Model specifies the ID of the model to use.
// See more here: https://platform.openai.com/docs/models/overview.
Model models.ChatCompletion `json:"model"`
// Messages are the messages to generate chat completions for, in the chat format.
Messages []*ChatMessage `json:"messages"`
// Functions are a list of functions the model may generate JSON inputs for.
Functions []*Function `json:"functions,omitempty"`
// FunctionCall controls how the model responds to function calls. "none" means the model does not call a function,
// and responds to the end-user. "auto" means the model can pick between an end-user or calling a function.
// Specifying a particular function via {"name":\ "my_function"} forces the model to call that function.
// "none" is the default when no functions are present. "auto" is the default if functions are present.
// Use FunctionCallByName to generate a FunctionCall value which will explicitly call a function named |name|.
FunctionCall *FunctionCall `json:"function_call,omitempty"`
// Temperature specifies what sampling temperature to use, between 0 and 2. Higher values like 0.8 will make the
// output more random, while lower values like 0.2 will make it more focused and deterministic. OpenAI generally
// recommends altering this or top_p but not both.
// Defaults to 1.
Temperature *float64 `json:"temperature,omitempty"`
// TopP specifies an alternative to sampling with temperature, called nucleus sampling, where the model considers
// the results of the tokens with top_p probability mass. So 0.1 means only the tokens comprising the top 10%
// probability mass are considered. OpenAI generally recommends altering this or temperature but not both.
// Defaults to 1.
TopP *float64 `json:"top_p,omitempty"`
// N specifies many chat completion choices to generate for each input message.
// Defaults to 1.
N int `json:"n,omitempty"`
// Stop specifies up to 4 sequences where the API will stop generating further tokens.
Stop []string `json:"stop,omitempty"`
// MaxTokens specifies the maximum number of tokens to generate in the chat completion. The total length of input
// tokens and generated tokens is limited by the model's context length.
// Defaults to Infinity.
MaxTokens int `json:"max_tokens,omitempty"`
// PresencePenalty can be a number between -2.0 and 2.0. Positive values penalize new tokens based on whether they
// appear in the text so far, increasing the model's likelihood to talk about new topics.
// Defaults to 0.
PresencePenalty float32 `json:"presence_penalty,omitempty"`
// FrequencyPenalty can be a number between -2.0 and 2.0. Positive values penalize new tokens based on their
// existing frequency in the text so far, decreasing the model's likelihood to repeat the same line verbatim.
// Defaults to 0.
FrequencyPenalty float32 `json:"frequency_penalty,omitempty"`
// LogitBias modifies the likelihood of specified tokens appearing in the completion. Accepts a json object that
// maps tokens (specified by their token ID in the tokenizer) to an associated bias value from -100 to 100.
// Mathematically, the bias is added to the logits generated by the model prior to sampling. The exact effect will
// vary per model, but values between -1 and 1 should decrease or increase likelihood of selection; values like -100
// or 100 should result in a ban or exclusive selection of the relevant token.
// Defaults to null.
LogitBias map[string]int `json:"logit_bias,omitempty"`
// User is a unique identifier representing your end-user, which can help OpenAI to monitor and detect abuse.
// See more here: https://beta.openai.com/docs/guides/safety-best-practices/end-user-ids
User string `json:"user,omitempty"`
}
// CreateChatCompletion creates a chat completion for the provided prompt and parameters.
func (c *Client) CreateChatCompletion(ctx context.Context, cr *ChatCompletionRequest) (*ChatCompletionResponse, error) {
var b, err = c.post(ctx, routes.ChatCompletions, cr)
if err != nil {
return nil, err
}
var resp = &ChatCompletionResponse{}
if err = json.Unmarshal(b, resp); err != nil {
return nil, err
}
return resp, nil
}
// ChatCompletionResponse is the response from the chat completions endpoint.
type ChatCompletionResponse struct {
ID string `json:"id"`
Object objects.Object `json:"object"`
Created uint64 `json:"created"`
Choices []*ChatCompletionChoice `json:"choices"`
Usage *Usage `json:"usage"`
}
// ChatCompletionChoice represents one of possible chat completions.
type ChatCompletionChoice struct {
Index int `json:"index"`
Message *ChatMessage `json:"message"`
FinishReason string `json:"finish_reason"`
}