Skip to content
New issue

Have a question about this project? # for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “#”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? # to your account

i changed the number of ratios, then model can not train ,where should i have to modify futher? #14

Open
joeyslv opened this issue Mar 29, 2022 · 0 comments

Comments

@joeyslv
Copy link

joeyslv commented Mar 29, 2022

i modify the ratios=[1] to ratios=[2.444, 3.182, 1.574, 1.721, 0.994, 1.163, 0.751, 0.534] then have a error like this:

2022-03-29 15:12:23,844 - mmdet - INFO - workflow: [('train', 1)], max: 100 epochs
2022-03-29 15:12:23,844 - mmdet - INFO - Checkpoints will be saved to E:\Object-Detection\Github\radar-detection\work_dirs\radar_tood by HardDiskBackend.
D:\App\anaconda\envs\swin-t\lib\site-packages\torch\nn\functional.py:718: UserWarning: Named tensors and all their associated APIs are an experimental feature and subject to change. Please do not use them for anything important until they are released as stable. (Triggered internally at  ..\c10/core/TensorImpl.h:1156.)
  return torch.max_pool2d(input, kernel_size, stride, padding, dilation, ceil_mode)
Traceback (most recent call last):
  File "D:\App\anaconda\envs\swin-t\lib\site-packages\mmcv\runner\epoch_based_runner.py", line 50, in train
    self.run_iter(data_batch, train_mode=True, **kwargs)
  File "D:\App\anaconda\envs\swin-t\lib\site-packages\mmcv\runner\epoch_based_runner.py", line 30, in run_iter
    **kwargs)
  File "D:\App\anaconda\envs\swin-t\lib\site-packages\mmcv\parallel\data_parallel.py", line 75, in train_step
    return self.module.train_step(*inputs[0], **kwargs[0])
  File "D:\App\anaconda\envs\swin-t\lib\site-packages\mmdet\models\detectors\base.py", line 248, in train_step
    losses = self(**data)
  File "D:\App\anaconda\envs\swin-t\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
    return forward_call(*input, **kwargs)
  File "D:\App\anaconda\envs\swin-t\lib\site-packages\mmcv\runner\fp16_utils.py", line 98, in new_func
    return old_func(*args, **kwargs)
  File "D:\App\anaconda\envs\swin-t\lib\site-packages\mmdet\models\detectors\base.py", line 172, in forward
    return self.forward_train(img, img_metas, **kwargs)
  File "D:\App\anaconda\envs\swin-t\lib\site-packages\mmdet\models\detectors\single_stage.py", line 84, in forward_train
    gt_labels, gt_bboxes_ignore)
  File "D:\App\anaconda\envs\swin-t\lib\site-packages\mmdet\models\dense_heads\base_dense_head.py", line 330, in forward_train
    outs = self(x)
  File "D:\App\anaconda\envs\swin-t\lib\site-packages\torch\nn\modules\module.py", line 1051, in _call_impl
    return forward_call(*input, **kwargs)
  File "D:\App\anaconda\envs\swin-t\lib\site-packages\mmdet\models\dense_heads\tood_head.py", line 263, in forward
    b, h, w, 4).permute(0, 3, 1, 2) / stride[0]
RuntimeError: shape '[8, 32, 168, 4]' is invalid for input of size 1376256

and this is my config file

dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(
        type='Normalize',
        mean=[123.675, 116.28, 103.53],
        std=[58.395, 57.12, 57.375],
        to_rgb=True),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img'])
        ])
]
data = dict(
    samples_per_gpu=8,
    workers_per_gpu=1,
    train=dict(
        type='CocoDataset',
        ann_file='E:/Object-Detection/data_radar/devkit/voc07_train.json',
        img_prefix='E:/Object-Detection/data_radar/devkit/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(type='LoadAnnotations', with_bbox=True),
            dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
            dict(type='RandomFlip', flip_ratio=0.5),
            dict(
                type='Normalize',
                mean=[123.675, 116.28, 103.53],
                std=[58.395, 57.12, 57.375],
                to_rgb=True),
            dict(type='Pad', size_divisor=32),
            dict(type='DefaultFormatBundle'),
            dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels'])
        ],
        classes=('loose_l', 'loose_s', 'poor_l', 'porous')),
    val=dict(
        type='CocoDataset',
        ann_file='E:/Object-Detection/data_radar/devkit/voc07_val.json',
        img_prefix='E:/Object-Detection/data_radar/devkit/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ],
        classes=('loose_l', 'loose_s', 'poor_l', 'porous')),
    test=dict(
        type='CocoDataset',
        ann_file='E:/Object-Detection/data_radar/devkit/voc07_test.json',
        img_prefix='E:/Object-Detection/data_radar/devkit/',
        pipeline=[
            dict(type='LoadImageFromFile'),
            dict(
                type='MultiScaleFlipAug',
                img_scale=(1333, 800),
                flip=False,
                transforms=[
                    dict(type='Resize', keep_ratio=True),
                    dict(type='RandomFlip'),
                    dict(
                        type='Normalize',
                        mean=[123.675, 116.28, 103.53],
                        std=[58.395, 57.12, 57.375],
                        to_rgb=True),
                    dict(type='Pad', size_divisor=32),
                    dict(type='ImageToTensor', keys=['img']),
                    dict(type='Collect', keys=['img'])
                ])
        ],
        classes=('loose_l', 'loose_s', 'poor_l', 'porous')))
evaluation = dict(interval=1, metric='bbox')
optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=100)
checkpoint_config = dict(interval=10)
log_config = dict(interval=50, hooks=[dict(type='TextLoggerHook')])
custom_hooks = [dict(type='SetEpochInfoHook')]
dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]
opencv_num_threads = 0
mp_start_method = 'fork'
model = dict(
    type='TOOD',
    backbone=dict(
        type='ResNet',
        depth=50,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=1,
        norm_cfg=dict(type='BN', requires_grad=True),
        norm_eval=True,
        style='pytorch',
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
    neck=dict(
        type='FPN',
        in_channels=[256, 512, 1024, 2048],
        out_channels=256,
        start_level=1,
        add_extra_convs='on_output',
        num_outs=5),
    bbox_head=dict(
        type='TOODHead',
        num_classes=4,
        in_channels=256,
        stacked_convs=6,
        feat_channels=256,
        anchor_type='anchor_based',
        anchor_generator=dict(
            type='AnchorGenerator',
            ratios=[2.444, 3.182, 1.574, 1.721, 0.994, 1.163, 0.751, 0.534],
            octave_base_scale=1,
            scales_per_octave=1,
            strides=[8, 16, 32, 64, 128]),
        bbox_coder=dict(
            type='DeltaXYWHBBoxCoder',
            target_means=[0.0, 0.0, 0.0, 0.0],
            target_stds=[0.1, 0.1, 0.2, 0.2]),
        initial_loss_cls=dict(
            type='FocalLoss',
            use_sigmoid=True,
            activated=True,
            gamma=2.0,
            alpha=0.25,
            loss_weight=1.0),
        loss_cls=dict(
            type='QualityFocalLoss',
            use_sigmoid=True,
            activated=True,
            beta=2.0,
            loss_weight=1.0),
        loss_bbox=dict(type='GIoULoss', loss_weight=2.0)),
    train_cfg=dict(
        initial_epoch=4,
        initial_assigner=dict(type='ATSSAssigner', topk=9),
        assigner=dict(type='TaskAlignedAssigner', topk=13),
        alpha=1,
        beta=6,
        allowed_border=-1,
        pos_weight=-1,
        debug=False),
    test_cfg=dict(
        nms_pre=1000,
        min_bbox_size=0,
        score_thr=0.05,
        nms=dict(type='nms', iou_threshold=0.6),
        max_per_img=100))
classes = ('loose_l', 'loose_s', 'poor_l', 'porous')
work_dir = './work_dirs\radar_tood'
auto_resume = False
gpu_ids = [0]
# for free to join this conversation on GitHub. Already have an account? # to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant