-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstreamlit_app.py
114 lines (96 loc) · 3.46 KB
/
streamlit_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
import datetime
from collections import OrderedDict
import pandas as pd
import shap
import streamlit as st
from matplotlib import pyplot as plt
from credit_model import CreditScoringModel
st.set_page_config(layout="wide")
model = CreditScoringModel()
if not model.is_model_trained():
raise Exception("The credit scoring model has not been trained. Please run run.py.")
def get_loan_request():
zipcode = st.sidebar.text_input("Zip code", "94109")
date_of_birth = st.sidebar.date_input(
"Date of birth", value=datetime.date(year=1986, day=19, month=3)
)
ssn_last_four = st.sidebar.text_input(
"Last four digits of social security number", "3643"
)
dob_ssn = f"{date_of_birth.strftime('%Y%m%d')}_{str(ssn_last_four)}"
age = st.sidebar.slider("Age", 0, 130, 25)
income = st.sidebar.slider("Yearly Income", 0, 1000000, 120000)
person_home_ownership = st.sidebar.selectbox(
"Do you own or rent your home?", ("RENT", "MORTGAGE", "OWN")
)
employment = st.sidebar.slider(
"How long have you been employed (months)?", 0, 120, 12
)
loan_intent = st.sidebar.selectbox(
"Why do you want to apply for a loan?",
(
"PERSONAL",
"VENTURE",
"HOMEIMPROVEMENT",
"EDUCATION",
"MEDICAL",
"DEBTCONSOLIDATION",
),
)
amount = st.sidebar.slider("Loan amount", 0, 100000, 10000)
interest = st.sidebar.slider("Preferred interest rate", 1.0, 25.0, 12.0, step=0.1)
return OrderedDict(
{
"zipcode": [int(zipcode)],
"dob_ssn": [dob_ssn],
"person_age": [age],
"person_income": [income],
"person_home_ownership": [person_home_ownership],
"person_emp_length": [float(employment)],
"loan_intent": [loan_intent],
"loan_amnt": [amount],
"loan_int_rate": [interest],
}
)
# Application
st.title("Loan Application")
# Input Side Bar
st.header("User input:")
loan_request = get_loan_request()
df = pd.DataFrame.from_dict(loan_request)
# Full feature vector
st.header("Feature vector (user input + zipcode features + user features):")
vector = model._get_online_features_from_feast(loan_request)
ordered_vector = loan_request.copy()
key_list = vector.keys()
key_list = sorted(key_list)
for vector_key in key_list:
if vector_key not in ordered_vector:
ordered_vector[vector_key] = vector[vector_key]
df = pd.DataFrame.from_dict(ordered_vector)
# Results of prediction
st.header("Application Status (model prediction):")
result = model.predict(loan_request)
if result == 0:
st.success("Your loan has been approved!")
elif result == 1:
st.error("Your loan has been rejected!")
# Feature importance
st.header("Feature Importance")
X = pd.read_parquet("data/training_dataset_sample.parquet")
print(X.shape)
#explainer = shap.TreeExplainer(model.classifier)
explainer = shap.Explainer(model.classifier, X)
shap_values = explainer(X)
left, mid, right = st.columns(3)
with left:
plt.title("Feature importance based on SHAP values")
#st.set_option('deprecation.showPyplotGlobalUse', False)
shap.plots.beeswarm(shap_values[:,:,1], show=True)
st.pyplot(bbox_inches='tight')
st.write("---")
with mid:
plt.title("Feature importance based on SHAP values (Bar)")
#st.set_option('deprecation.showPyplotGlobalUse', False)
shap.plots.bar(shap_values[:,:,1], show=True)
st.pyplot(bbox_inches='tight')