-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathoperators.py
884 lines (727 loc) · 32.4 KB
/
operators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
# ##### BEGIN GPL LICENSE BLOCK #####
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
#
# ##### END GPL LICENSE BLOCK #####
import bmesh
import bpy
import ctypes
import gpu
import gpu_extras.batch
import math
import mathutils
import multiprocessing
import multiprocessing.sharedctypes
import os
from . import types
from . import utils
class MESH_OT_YAVNEBase(bpy.types.Operator):
bl_idname = 'mesh.yavne_base'
bl_label = 'YAVNE Base Operator'
bl_options = {'INTERNAL'}
addon_key = __package__.split('.')[0]
@classmethod
def poll(cls, context):
# An active mesh object in Edit mode is required, and the operator is
# only valid in 'VIEW_3D' space.
edit_object = context.edit_object
return (edit_object and
edit_object.type == 'MESH' and
edit_object.mode == 'EDIT' and
context.space_data.type == 'VIEW_3D')
def __init__(self):
mesh = bpy.context.edit_object.data
bm = bmesh.from_edit_mesh(mesh)
vert_int_layers = bm.verts.layers.int
face_int_layers = bm.faces.layers.int
loop_float_layers = bm.loops.layers.float
# Reference addon.
self.addon = bpy.context.preferences.addons[self.addon_key]
# Ensure that the 'vertex-normal-weight' custom data layer exists.
if not 'vertex-normal-weight' in vert_int_layers.keys():
vert_int_layers.new('vertex-normal-weight')
# Ensure that the 'face-normal-influence' custom data layer exists.
if not 'face-normal-influence' in face_int_layers.keys():
face_int_layers.new('face-normal-influence')
# Ensure that loop-space normal custom data layers exist.
if not 'loop-normal-x' in loop_float_layers.keys():
loop_float_layers.new('loop-normal-x')
if not 'loop-normal-y' in loop_float_layers.keys():
loop_float_layers.new('loop-normal-y')
if not 'loop-normal-z' in loop_float_layers.keys():
loop_float_layers.new('loop-normal-z')
# Update the mesh.
bmesh.update_edit_mesh(mesh)
class MESH_OT_ManageVertexNormalWeight(MESH_OT_YAVNEBase):
bl_idname = 'mesh.yavne_manage_vertex_normal_weight'
bl_label = 'Manage Vertex Normal Weight'
bl_description = (
'Select vertices by vertex normal weight, or assign vertex normal ' +
'weight to selected vertices.'
)
bl_options = {'UNDO'}
action: bpy.props.EnumProperty(
name = 'Operator Action (Get or Set)',
description = '',
default = 'GET',
items = [
('GET', 'Get', 'Selects vertices by given vertex normal weight', '', 0),
('SET', 'Set', 'Assigns given vertex normal weight to selected vertices', '', 1)
]
)
type: types.VertexNormalWeight.create_property()
update: bpy.props.BoolProperty(
name = 'Update Vertex Normals',
description = 'Update vertex normals at the end of a "Set" action.',
default = True
)
def execute(self, context):
edit_object = context.edit_object
edit_object.update_from_editmode()
mesh = edit_object.data
bm = bmesh.from_edit_mesh(mesh)
vertex_normal_weight_layer = bm.verts.layers.int['vertex-normal-weight']
loop_normal_x_layer = bm.loops.layers.float['loop-normal-x']
loop_normal_y_layer = bm.loops.layers.float['loop-normal-y']
loop_normal_z_layer = bm.loops.layers.float['loop-normal-z']
# Determine enumerated vertex normal weight value.
vertex_normal_weight = types.VertexNormalWeight[self.type].value
# Select vertices by given vertex normal weight.
if self.action == 'GET':
context.tool_settings.mesh_select_mode = (True, False, False)
for v in bm.verts:
if v[vertex_normal_weight_layer] == vertex_normal_weight:
v.select = True
else:
v.select = False
bm.select_mode = {'VERT'}
bm.select_flush_mode()
# Assign given vertex normal weight to selected vertices.
elif self.action == 'SET':
selected_verts = [v for v in bm.verts if v.select]
for v in selected_verts:
v[vertex_normal_weight_layer] = vertex_normal_weight
# Set unweighted vertex normal component values.
if self.type == 'UNWEIGHTED':
mesh.calc_normals_split()
for v in selected_verts:
for loop in v.link_loops:
vn_local = mesh.loops[loop.index].normal
vn_loop = utils.loop_space_transform(loop, vn_local)
loop[loop_normal_x_layer] = vn_loop.x
loop[loop_normal_y_layer] = vn_loop.y
loop[loop_normal_z_layer] = vn_loop.z
mesh.free_normals_split()
# Update the mesh.
bmesh.update_edit_mesh(mesh)
if self.action == 'SET' and self.update:
bpy.ops.mesh.yavne_update_vertex_normals()
return {'FINISHED'}
class MESH_OT_ManageFaceNormalInfluence(MESH_OT_YAVNEBase):
bl_idname = 'mesh.yavne_manage_face_normal_influence'
bl_label = 'Manage Face Normal Influence'
bl_description = (
'Select faces by normal vector influence, or assign normal ' +
'vector influence to selected faces.'
)
bl_options = {'UNDO'}
action: bpy.props.EnumProperty(
name = 'Operator Action (Get or Set)',
description = '',
default = 'GET',
items = [
('GET', 'Get', 'Selects faces by given normal vector influence', '', 0),
('SET', 'Set', 'Assigns given normal vector influence to selected faces', '', 1)
]
)
type: types.FaceNormalInfluence.create_property()
update: bpy.props.BoolProperty(
name = 'Update Vertex Normals',
description = 'Update vertex normals at the end of a "Set" action.',
default = True
)
def execute(self, context):
mesh = bpy.context.edit_object.data
bm = bmesh.from_edit_mesh(mesh)
face_normal_influence_layer = bm.faces.layers.int['face-normal-influence']
# Determine enumerated face normal influence value.
face_normal_influence = types.FaceNormalInfluence[self.type].value
# Select faces by given normal vector influence.
if self.action == 'GET':
context.tool_settings.mesh_select_mode = (False, False, True)
for f in bm.faces:
if f[face_normal_influence_layer] == face_normal_influence:
f.select = True
else:
f.select = False
bm.select_mode = {'FACE'}
bm.select_flush_mode()
# Assign given face normal influence to selected faces.
elif self.action == 'SET' and mesh.total_face_sel:
selected_faces = [f for f in bm.faces if f.select]
for f in selected_faces:
f[face_normal_influence_layer] = face_normal_influence
# Update the mesh.
bmesh.update_edit_mesh(mesh)
if self.action == 'SET' and self.update:
bpy.ops.mesh.yavne_update_vertex_normals()
return {'FINISHED'}
class MESH_OT_PickShadingSource(MESH_OT_YAVNEBase):
bl_idname = 'view3d.yavne_pick_shading_source'
bl_label = 'Pick Shading Source'
bl_description = 'Pick object from which to transfer interpolated normals.'
bl_options = set()
def execute(self, context):
edit_object = context.edit_object
scene = context.scene
# Exit Edit mode, if necessary.
self.initially_in_edit_mode = context.mode == 'EDIT_MESH'
if self.initially_in_edit_mode:
bpy.ops.object.mode_set(mode = 'OBJECT')
# Populate a list of objects that are valid as shading sources.
self.available_sources = [
obj
for obj in scene.objects
if (obj.type == 'MESH' and
obj is not edit_object and
not obj.hide_viewport
)
]
# Hide objects that are visible but invalid as shading sources.
self.temporarily_hidden_objects = [
obj
for obj in scene.objects
if ((obj.type != 'MESH' and obj.visible_get()) or
obj is edit_object
)
]
for obj in self.temporarily_hidden_objects:
obj.hide_viewport = True
# Display the operator's instructions in the active area's header.
context.area.header_text_set('LMB: Pick, Escape: Cancel')
context.window_manager.modal_handler_add(self)
return {'RUNNING_MODAL'}
def modal(self, context, event):
context.area.tag_redraw()
if event.type == 'LEFTMOUSE' and event.value == 'PRESS':
region = context.region
rv3d = context.region_data
sv3d = context.space_data
x, y = event.mouse_region_x, event.mouse_region_y
available_sources = self.available_sources
# Determine the view's clipping distances.
if rv3d.view_perspective == 'CAMERA':
near = sv3d.camera.data.clip_start
far = sv3d.camera.data.clip_end
else:
near = sv3d.clip_start
far = sv3d.clip_end
# Attempt to pick a mesh object under the cursor.
hit = utils.pick_object(region, rv3d, x, y, near, far, available_sources)
# Set the shading source accordingly.
self.addon.preferences.source = hit[0].name if hit else ''
self.finish(context)
return {'FINISHED'}
elif event.type == 'ESC':
self.finish(context)
return {'CANCELLED'}
return {'RUNNING_MODAL'}
def finish(self, context):
# Reveal temporarily hidden objects.
for obj in self.temporarily_hidden_objects:
obj.hide_viewport = False
# Return to Edit mode, if necessary.
if self.initially_in_edit_mode:
bpy.ops.object.mode_set(mode = 'EDIT')
# Restore active area's header to its initial state.
context.area.header_text_set(text = None)
class MESH_OT_GetNormalVector(MESH_OT_YAVNEBase):
bl_idname = 'mesh.yavne_get_normal_vector'
bl_label = 'Get Normal Vector'
bl_description = 'Copy selected face/vertex normal vector to a buffer.'
@classmethod
def poll(cls, context):
# Exactly one vertex or face must be selected.
mesh = context.edit_object.data
return (super().poll(context) and
(mesh.total_vert_sel == 1 or mesh.total_face_sel == 1))
def execute(self, context):
mesh = context.edit_object.data
if mesh.total_face_sel == 1:
return self.get_face_normal(context)
elif mesh.total_vert_sel == 1:
return self.get_vertex_normal(context)
else:
return {'CANCELLED'}
def modal(self, context, event):
context.area.tag_redraw()
self.show_usage(context)
# Confirm selection.
if event.type == 'RET' and event.value == 'PRESS':
self.store_vertex_normal(context)
self.finish(context)
return {'FINISHED'}
# Select previous split normal.
elif event.type == 'LEFT_ARROW' and event.value == 'PRESS':
self.selected_idx = (self.selected_idx - 1) % self.num_normals
# Select next split normal.
elif event.type == 'RIGHT_ARROW' and event.value == 'PRESS':
self.selected_idx = (self.selected_idx + 1) % self.num_normals
# Cancel operation.
elif event.type == 'ESC':
self.finish(context)
return {'CANCELLED'}
return {'RUNNING_MODAL'}
def get_face_normal(self, context):
edit_object = context.edit_object
mesh = edit_object.data
model_matrix = edit_object.matrix_world
bm = bmesh.from_edit_mesh(mesh)
# Determine which face is selected.
selected_face = [f for f in bm.faces if f.select][0]
# Store selected face normal.
vn_global = model_matrix @ selected_face.normal
self.addon.preferences.normal_buffer = vn_global
return {'FINISHED'}
def get_vertex_normal(self, context):
edit_object = context.edit_object
edit_object.update_from_editmode()
model_matrix = edit_object.matrix_world
mesh = edit_object.data
mesh.calc_normals_split()
bm = bmesh.from_edit_mesh(mesh)
overlay = context.space_data.overlay
# Determine which vertex is selected.
selected_vert = [v for v in bm.verts if v.select][0]
self.vertex_co = model_matrix @ selected_vert.co
# Gather world space normal vectors associated with selected vertex.
normals = set(
(model_matrix @ mesh.loops[loop.index].normal).to_tuple()
for loop in selected_vert.link_loops
)
self.normals = list(normals)
self.selected_idx = 0
self.num_normals = len(self.normals)
# Return early if selected vertex is not part of a face.
if not self.num_normals:
return {'CANCELLED'}
# Store the only normal vector associated with selected vertex.
elif self.num_normals == 1:
self.store_vertex_normal(context)
return {'FINISHED'}
# Allow user to select one of multiple normal vectors.
else:
# Temporarily hide vertex normals.
self.saved_show_vertex_normals = overlay.show_vertex_normals
overlay.show_vertex_normals = False
self.saved_show_split_normals = overlay.show_split_normals
overlay.show_split_normals = False
self.saved_show_face_normals = overlay.show_face_normals
overlay.show_face_normals = False
# Add render callback.
self.post_view_handle = bpy.types.SpaceView3D.draw_handler_add(
self.post_view_callback,
(context,),
'WINDOW',
'POST_VIEW'
)
# Transfer control to interactive mode of operation.
context.window_manager.modal_handler_add(self)
return {'RUNNING_MODAL'}
def show_usage(self, context):
vn_global = self.normals[self.selected_idx]
# Display usage instructions in the active area's header.
usage = (
'Left/Right: Select Normal Enter: Confirm ' +
'Escape: Cancel Normal: ({0:.2}, {1:.2}, {2:.2})'
).format(*vn_global)
context.area.header_text_set(usage)
def store_vertex_normal(self, context):
# Store current vertex normal in property buffer.
vn_global = mathutils.Vector(self.normals[self.selected_idx])
self.addon.preferences.normal_buffer = vn_global
def finish(self, context):
mesh = context.edit_object.data
overlay = context.space_data.overlay
# Reveal temporarily hidden vertex normals.
overlay.show_vertex_normals = self.saved_show_vertex_normals
overlay.show_split_normals = self.saved_show_split_normals
overlay.show_face_normals = self.saved_show_face_normals
# Remove render callback.
bpy.types.SpaceView3D.draw_handler_remove(
self.post_view_handle,
'WINDOW'
)
# Restore active area's header to its initial state.
context.area.header_text_set(text = None)
def post_view_callback(self, context):
start = self.vertex_co
normals_length = context.space_data.overlay.normals_length
view_3d_theme = context.preferences.themes['Default'].view_3d
default_color = (*view_3d_theme.split_normal, 1.0)
highlight_color = (1.0, 1.0, 1.0, 1.0)
# Draw unselected normals of selected vertex.
coords = []
for idx in range(len(self.normals)):
if idx != self.selected_idx:
vn_global = self.normals[idx]
end = start + mathutils.Vector(vn_global) * normals_length
coords.append(start.to_tuple())
coords.append(end.to_tuple())
shader = gpu.shader.from_builtin('3D_UNIFORM_COLOR')
shader.bind()
shader.uniform_float('color', default_color)
batch = gpu_extras.batch.batch_for_shader(
shader, 'LINES', {'pos': coords})
batch.draw(shader)
# Highlight selected normal.
end = start + mathutils.Vector(self.normals[self.selected_idx]) * normals_length
coords = [start.to_tuple(), end.to_tuple()]
shader = gpu.shader.from_builtin('3D_UNIFORM_COLOR')
shader.bind()
shader.uniform_float('color', highlight_color)
batch = gpu_extras.batch.batch_for_shader(
shader, 'LINES', {'pos': coords})
batch.draw(shader)
class MESH_OT_SetNormalVector(MESH_OT_YAVNEBase):
bl_idname = 'mesh.yavne_set_normal_vector'
bl_label = 'Set Normal Vector'
bl_description = 'Assign stored normal vector to selected vertices.'
bl_options = {'UNDO', 'INTERNAL'}
@classmethod
def poll(cls, context):
# At least one vertex must be selected.
mesh = context.edit_object.data
return (super().poll(context) and
mesh.total_vert_sel > 0)
def execute(self, context):
edit_object = context.edit_object
mesh = edit_object.data
bm = bmesh.from_edit_mesh(mesh)
normal_buffer = self.addon.preferences.normal_buffer
vertex_normal_weight_layer = bm.verts.layers.int['vertex-normal-weight']
loop_normal_x_layer = bm.loops.layers.float['loop-normal-x']
loop_normal_y_layer = bm.loops.layers.float['loop-normal-y']
loop_normal_z_layer = bm.loops.layers.float['loop-normal-z']
# Assign stored world space normal vector to all selected vertices.
vn_local = edit_object.matrix_world.inverted() @ normal_buffer
for v in [v for v in bm.verts if v.select]:
v[vertex_normal_weight_layer] = types.VertexNormalWeight.UNWEIGHTED.value
for loop in v.link_loops:
vn_loop = utils.loop_space_transform(loop, vn_local)
loop[loop_normal_x_layer] = vn_loop.x
loop[loop_normal_y_layer] = vn_loop.y
loop[loop_normal_z_layer] = vn_loop.z
# Update the mesh.
bpy.ops.mesh.yavne_update_vertex_normals()
bmesh.update_edit_mesh(mesh)
return {'FINISHED'}
class MESH_OT_MergeVertexNormals(MESH_OT_YAVNEBase):
bl_idname = 'mesh.yavne_merge_vertex_normals'
bl_label = 'Merge Vertex Normals'
bl_description = (
'Merge selected vertex normals within given distance of each other.'
)
bl_options = {'REGISTER', 'UNDO'}
distance: bpy.props.FloatProperty(
name = 'Merge Distance',
description = 'Maximum allowed distance between merged vertex normals',
default = 0.0001,
min = 0.0001
)
unselected: bpy.props.BoolProperty(
name = 'Unselected',
description = (
'Unselected vertex normals within given distance of selected ' +
'vertices are also merged.'
),
default = False
)
@classmethod
def poll(cls, context):
# At least one vertex must be selected.
mesh = context.edit_object.data
return (super().poll(context) and
mesh.total_vert_sel > 0)
def execute(self, context):
edit_object = context.edit_object
edit_object.update_from_editmode()
mesh = edit_object.data
bm = bmesh.from_edit_mesh(mesh)
vertex_normal_weight_layer = bm.verts.layers.int['vertex-normal-weight']
loop_normal_x_layer = bm.loops.layers.float['loop-normal-x']
loop_normal_y_layer = bm.loops.layers.float['loop-normal-y']
loop_normal_z_layer = bm.loops.layers.float['loop-normal-z']
merge_distance_squared = self.distance ** 2
# Organize vertices into discrete space.
cells = {}
selected_verts = set(v for v in bm.verts if v.select)
for v in (bm.verts if self.unselected else selected_verts):
v_co = v.co
x = v_co.x // self.distance
y = v_co.y // self.distance
z = v_co.z // self.distance
# Ensure that the cell exists.
if not x in cells:
cells[x] = {}
if not y in cells[x]:
cells[x][y] = {}
if not z in cells[x][y]:
cells[x][y][z] = []
# Add vertex reference to the cell.
cells[x][y][z].append(v)
# Merge vertex normals in the vicinity of each selected vertex.
mesh.calc_normals_split()
while selected_verts:
v_curr = selected_verts.pop()
v_curr_co = v_curr.co
v_curr_normal_count = len(set(
mesh.loops[loop.index].normal.to_tuple()
for loop in v_curr.link_loops
))
x = v_curr_co.x // self.distance
y = v_curr_co.y // self.distance
z = v_curr_co.z // self.distance
# Search adjacent cells for vertices.
nearby_verts = []
for i in [x - 1, x, x + 1]:
for j in [y - 1, y, y + 1]:
for k in [z - 1, z, z + 1]:
# Add contents of current cell to search results.
if i in cells and j in cells[i] and k in cells[i][j]:
nearby_verts.extend(cells[i][j][k])
# Exclude vertices that are outside of given merge distance.
mergeable_verts = [
v
for v in nearby_verts
if (v.co - v_curr_co).length_squared <= merge_distance_squared
]
# Calculate merged normal.
vn_local = mathutils.Vector()
for v in mergeable_verts:
# Average normals of current vertex.
vn = mathutils.Vector()
for loop in v.link_loops:
vn += mesh.loops[loop.index].normal
vn.normalize()
# Include current, averaged vertex normal in merged normal.
vn_local += vn
vn_local.normalize()
# Assign merged normal to all vertices within given merge distance.
if v_curr_normal_count > 1 or len(mergeable_verts) > 1:
for v in mergeable_verts:
v[vertex_normal_weight_layer] = types.VertexNormalWeight.UNWEIGHTED.value
for loop in v.link_loops:
vn_loop = utils.loop_space_transform(loop, vn_local)
loop[loop_normal_x_layer] = vn_loop.x
loop[loop_normal_y_layer] = vn_loop.y
loop[loop_normal_z_layer] = vn_loop.z
# Indicate which selected vertices have been merged.
local_selection = [v for v in mergeable_verts if v.select]
selected_verts.difference_update(local_selection)
# Update the mesh.
bpy.ops.mesh.yavne_update_vertex_normals()
bmesh.update_edit_mesh(mesh)
return {'FINISHED'}
class MESH_OT_TransferShading(MESH_OT_YAVNEBase):
bl_idname = 'mesh.yavne_transfer_shading'
bl_label = 'Transfer Shading'
bl_description = (
'Transfer interpolated normals from source object to nearest, ' +
'selected vertices.'
)
bl_options = set()
@classmethod
def poll(cls, context):
# The source and target objects must be distinct, and at least one
# vertex must be selected from the target object.
addon = context.preferences.addons[cls.addon_key]
source = addon.preferences.source
edit_object = context.edit_object
return (super().poll(context) and
source and source != edit_object and
edit_object.data.total_vert_sel)
def execute(self, context):
edit_object = context.edit_object
mesh = edit_object.data
mesh.use_auto_smooth = True
modifiers = edit_object.modifiers
source = self.addon.preferences.source
# Modifiers can only be applied in Object mode.
bpy.ops.object.mode_set(mode = 'OBJECT')
# Group selected vertices.
selected_vertices = [v.index for v in mesh.vertices if v.select]
selected_vertices_group = edit_object.vertex_groups.new(name = 'Selected')
selected_vertices_group.add(selected_vertices, 1, 'ADD')
# Add data transfer modifier.
data_xfer_modifier = modifiers.new(name = '', type = 'DATA_TRANSFER')
data_xfer_modifier.object = bpy.data.objects[source]
data_xfer_modifier.use_loop_data = True
data_xfer_modifier.data_types_loops = {'CUSTOM_NORMAL'}
data_xfer_modifier.loop_mapping = 'POLYINTERP_NEAREST'
# Move data transfer modifier to the top of the stack.
while modifiers[0] != data_xfer_modifier:
bpy.ops.object.modifier_move_up(modifier = data_xfer_modifier.name)
# Apply data transfer modifier.
bpy.ops.object.modifier_apply(modifier = data_xfer_modifier.name)
# Delete the vertex group.
edit_object.vertex_groups.remove(selected_vertices_group)
# Return to Edit mode.
bpy.ops.object.mode_set(mode = 'EDIT')
# Lock transferred normals.
bpy.ops.mesh.yavne_manage_vertex_normal_weight(
action = 'SET',
type = 'UNWEIGHTED',
update = True
)
return {'FINISHED'}
class MESH_OT_UpdateVertexNormals(MESH_OT_YAVNEBase):
bl_idname = 'mesh.yavne_update_vertex_normals'
bl_label = 'Update Vertex Normals'
bl_description = (
'Recalculate vertex normals based on weights, face normal ' +
'influences, and sharp edges.'
)
bl_options = set()
def __init__(self):
super().__init__()
self.procs = []
def __del__(self):
if hasattr(super(), '__del__'):
super().__del__()
# Cleanup any lingering processes.
if hasattr(self, 'procs'):
for p in self.procs:
p.terminate()
def worker(self, bm, out, chunk, total):
'''
Calculates a chunk of split normals data
Parameters:
bm (bmesh.types.BMesh): BMesh data
out (Array<Vec3>): Output sequence of split normals as ctype structs
chunk (int): Chunk of data to process in range [0, total)
total (int): Total number of chunks
Pre:
Output sequence shall be large enough to accommodate all split
normals with given chunk of data.
Post:
Output sequence is modified.
'''
face_normal_influence_layer = bm.faces.layers.int['face-normal-influence']
vertex_normal_weight_layer = bm.verts.layers.int['vertex-normal-weight']
loop_normal_x_layer = bm.loops.layers.float['loop-normal-x']
loop_normal_y_layer = bm.loops.layers.float['loop-normal-y']
loop_normal_z_layer = bm.loops.layers.float['loop-normal-z']
# Create a cache for face areas.
if self.addon.preferences.use_linked_face_weights:
area_cache = types.LinkedFaceAreaCache(self.addon.preferences.link_angle)
else:
area_cache = types.FaceAreaCache()
# Determine the auto smooth angle.
if self.addon.preferences.use_auto_smooth:
smooth_angle = self.addon.preferences.smooth_angle
else:
smooth_angle = math.pi
# Determine which vertices are within the chunk of data.
first = int(chunk / total * len(bm.verts))
last = int((chunk + 1) / total * len(bm.verts))
# Calculate loop normals.
for idx in [i + first for i in range(last - first)]:
v = bm.verts[idx]
vertex_normal_weight = v[vertex_normal_weight_layer]
# Split vertex linked loops into shading groups.
for loop_group in utils.split_loops(
v, smooth_angle, self.addon.preferences.use_flat_faces):
# Determine which face type most influences this vertex.
influence_max = max((
loop.face[face_normal_influence_layer]
for loop in loop_group
))
# Ignore all but the most influential face normals.
loop_subgroup = [
loop
for loop in loop_group
if loop.face[face_normal_influence_layer] == influence_max
]
# Average face normals according to vertex normal weight.
vn_local = mathutils.Vector()
if vertex_normal_weight == types.VertexNormalWeight.UNIFORM.value:
for loop in loop_subgroup:
vn_local += loop.face.normal
elif vertex_normal_weight == types.VertexNormalWeight.ANGLE.value:
for loop in loop_subgroup:
vn_local += loop.calc_angle() * loop.face.normal
elif vertex_normal_weight == types.VertexNormalWeight.AREA.value:
for loop in loop_subgroup:
area = area_cache.get(loop.face)
vn_local += area * loop.face.normal
elif vertex_normal_weight == types.VertexNormalWeight.COMBINED.value:
for loop in loop_subgroup:
area = area_cache.get(loop.face)
vn_local += loop.calc_angle() * area * loop.face.normal
elif vertex_normal_weight == types.VertexNormalWeight.UNWEIGHTED.value:
for loop in loop_subgroup:
vn_loop = mathutils.Vector((
loop[loop_normal_x_layer],
loop[loop_normal_y_layer],
loop[loop_normal_z_layer]
))
vn_local += utils.loop_space_transform(loop, vn_loop, True)
# Assign calculated vertex normal to all loops in the group.
vn_local.normalize()
for loop in loop_group:
split_normal = out[loop.index]
split_normal.x, split_normal.y, split_normal.z = vn_local
def execute(self, context):
mesh = context.edit_object.data
overlay = context.space_data.overlay
# Split normal data can only be written from Object mode.
bpy.ops.object.mode_set(mode = 'OBJECT')
# Initialize BMesh.
bm = bmesh.new()
bm.from_mesh(mesh)
# Enable mesh/overlay flags.
mesh.use_auto_smooth = True
overlay.show_edge_sharp = True
# Prepare the mesh to be processed.
mesh.calc_normals_split()
bm.verts.ensure_lookup_table()
split_normals = multiprocessing.sharedctypes.Array(
types.Vec3, len(mesh.loops), lock = False)
# Execute in parallel for large datasets if supported by the system.
if len(bm.verts) > 5000 and os.name not in {'nt', 'posix'}:
# Create a team of worker processes.
num_procs = utils.get_num_procs()
for i in range(num_procs):
self.procs.append(multiprocessing.Process(
target = self.worker,
args = (bm, split_normals, i, num_procs)
))
# Start processes.
for p in self.procs:
p.start()
# Wait until all processes have finished.
while len(self.procs) > 0:
p = self.procs.pop()
p.join()
# Otherwise, execute serially.
else:
self.worker(bm, split_normals, 0, 1)
# Write split normal data to the mesh, and return to Edit mode.
mesh.normals_split_custom_set([(n.x, n.y, n.z) for n in split_normals])
bpy.ops.object.mode_set(mode = 'EDIT')
# Cleanup.
mesh.free_normals_split()
bm.free()
return {'FINISHED'}