-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathkmeans_smote.py
369 lines (308 loc) · 17.3 KB
/
kmeans_smote.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
"""K-Means SMOTE oversampling method for class-imbalanced data"""
# Authors: Felix Last
# License: MIT
import warnings
import math
import copy
import numpy as np
from sklearn.utils import check_random_state
from sklearn.metrics.pairwise import euclidean_distances
from imblearn.over_sampling.base import BaseOverSampler
from imblearn.over_sampling import SMOTE
from imblearn.over_sampling import RandomOverSampler
from imblearn.exceptions import raise_isinstance_error
from imblearn.utils import check_neighbors_object
from imblearn.utils.deprecation import deprecate_parameter
class KMeansSMOTE(BaseOverSampler):
"""Class to perform oversampling using K-Means SMOTE.
K-Means SMOTE works in three steps:
1. Cluster the entire input space using k-means.
2. Distribute the number of samples to generate across clusters:
1. Select clusters which have a high number of minority class samples.
2. Assign more synthetic samples to clusters where minority class samples are sparsely distributed.
3. Oversample each filtered cluster using SMOTE.
The method implements SMOTE and random oversampling as limit cases. Therefore, the following configurations
may be used to achieve the behavior of ...
... SMOTE: ``imbalance_ratio_threshold=float('Inf'), kmeans_args={'n_clusters':1}``
... random oversampling: ``imbalance_ratio_threshold=float('Inf'), kmeans_args={'n_clusters':1}, smote_args={'k_neighbors':0})``
Parameters
----------
sampling_strategy : str, dict, or callable, optional (default='auto')
Ratio to use for resampling the data set.
- If ``str``, has to be one of: (i) ``'minority'``: resample the
minority class; (ii) ``'majority'``: resample the majority class,
(iii) ``'not minority'``: resample all classes apart of the minority
class, (iv) ``'all'``: resample all classes, and (v) ``'auto'``:
correspond to ``'all'`` with for oversampling methods and ``'not
minority'`` for undersampling methods. The classes targeted will be
oversampled or undersampled to achieve an equal number of sample
with the majority or minority class.
- If ``dict``, the keys correspond to the targeted classes. The values
correspond to the desired number of samples.
- If callable, function taking ``y`` and returns a ``dict``. The keys
correspond to the targeted classes. The values correspond to the
desired number of samples.
random_state : int, RandomState instance or None, optional (default=None)
If int, ``random_state`` is the seed used by the random number
generator; If ``RandomState`` instance, random_state is the random
number generator; If ``None``, the random number generator is the
``RandomState`` instance used by ``np.random``.
Will be copied to kmeans_args and smote_args if not explicitly passed there.
kmeans_args : dict, optional (default={})
Parameters to be passed to ``sklearn.cluster.KMeans`` or ``sklearn.cluster.MiniBatchKMeans``
(see ``use_minibatch_kmeans``). If n_clusters is not explicitly set, scikit-learn's
default will apply.
smote_args : dict, optional (default={})
Parameters to be passed to ``imblearn.over_sampling.SMOTE``. Note that ``k_neighbors`` is automatically
adapted without warning when a cluster is smaller than the number of neighbors specified.
`sampling_strategy` will be overwritten according to sampling_strategy passed to this class. `random_state`
will be passed from this class if none is specified.
imbalance_ratio_threshold : float or dict, optional (default=1.0)
Specify a threshold for a cluster's imbalance ratio ``((majority_count + 1) / (minority_count + 1))``.
Only clusters with an imbalance ratio less than the threshold are oversampled. Use a dictionary to specify
different thresholds for different minority classes.
density_power : float, optional (default=None)
Used to compute the density of minority samples within each cluster. By default, the number of features will be used.
use_minibatch_kmeans : boolean, optional (default=True)
If False, use ``sklearn.cluster.KMeans``. If True, use ``sklearn.cluster.MiniBatchKMeans``.
n_jobs : int, optional (default=1)
The number of threads to open if possible. This parameter will be copied to ``kmeans_args`` and
``smote_args`` if not explicitly passed there. Note: ``MiniBatchKMeans`` does not accept ``n_jobs``.
Examples
--------
>>> import numpy as np
>>> from imblearn.datasets import fetch_datasets
>>> from kmeans_smote import KMeansSMOTE
>>>
>>> datasets = fetch_datasets(filter_data=['oil'])
>>> X, y = datasets['oil']['data'], datasets['oil']['target']
>>>
>>> [print('Class {} has {} instances'.format(label, count))
... for label, count in zip(*np.unique(y, return_counts=True))]
>>>
>>> kmeans_smote = KMeansSMOTE(
... kmeans_args={
... 'n_clusters': 100
... },
... smote_args={
... 'k_neighbors': 10
... }
... )
>>> X_resampled, y_resampled = kmeans_smote.fit_sample(X, y)
>>>
>>> [print('Class {} has {} instances after oversampling'.format(label, count))
... for label, count in zip(*np.unique(y_resampled, return_counts=True))]
"""
def __init__(self,
sampling_strategy='auto',
random_state=None,
kmeans_args=None,
smote_args=None,
imbalance_ratio_threshold=1.0,
density_power=None,
use_minibatch_kmeans=True,
n_jobs=1,
**kwargs):
super(KMeansSMOTE, self).__init__(sampling_strategy=sampling_strategy, **kwargs)
if kmeans_args is None:
kmeans_args = {}
if smote_args is None:
smote_args = {}
self.imbalance_ratio_threshold = imbalance_ratio_threshold
self.kmeans_args = copy.deepcopy(kmeans_args)
self.smote_args = copy.deepcopy(smote_args)
self.random_state = random_state
self.n_jobs = n_jobs
self.use_minibatch_kmeans = use_minibatch_kmeans
self.density_power = density_power
def _cluster(self, X):
"""Run k-means to cluster the dataset
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
Returns
-------
cluster_assignment : ndarray, shape (n_samples)
The corresponding cluster labels of ``X``.
"""
if self.use_minibatch_kmeans:
from sklearn.cluster import MiniBatchKMeans as KMeans
else:
from sklearn.cluster import KMeans as KMeans
kmeans = KMeans(**self.kmeans_args)
if self.use_minibatch_kmeans and 'init_size' not in self.kmeans_args:
self.kmeans_args['init_size'] = min(2 * kmeans.n_clusters, X.shape[0])
kmeans = KMeans(**self.kmeans_args)
kmeans.fit_transform(X)
cluster_assignment = kmeans.labels_
# kmeans.labels_ does not use continuous labels,
# i.e. some labels in 0..n_clusters may not exist. Tidy up this mess.
return cluster_assignment
def _filter_clusters(self, X, y, cluster_assignment, minority_class_label):
"""Determine sampling weight for each cluster.
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : ndarray, shape (n_samples, )
Corresponding label for each sample in X.
cluster_assignment : ndarray, shape (n_samples)
The corresponding cluster labels of ``X``.
minority_class_label : int
Label of the minority class to filter by.
Returns
-------
sampling_weights : ndarray, shape (np.max(np.unique(cluster_assignment)),)
Vector of sampling weights for each cluster
"""
# compute the shape of the density factors
# since the cluster labels are not continuous, make it large enough
# to fit all values up to the largest cluster label
largest_cluster_label = np.max(np.unique(cluster_assignment))
sparsity_factors = np.zeros((largest_cluster_label + 1,), dtype=np.float64)
minority_mask = (y == minority_class_label)
sparsity_sum = 0
imbalance_ratio_threshold = self.imbalance_ratio_threshold
if isinstance(imbalance_ratio_threshold, dict):
imbalance_ratio_threshold = imbalance_ratio_threshold[minority_class_label]
for i in np.unique(cluster_assignment):
cluster = X[cluster_assignment == i]
mask = minority_mask[cluster_assignment == i]
minority_count = cluster[mask].shape[0]
majority_count = cluster[~mask].shape[0]
imbalance_ratio = (majority_count + 1) / (minority_count + 1)
if (imbalance_ratio < imbalance_ratio_threshold) and (minority_count > 1):
distances = euclidean_distances(cluster[mask])
non_diagonal_distances = distances[
~np.eye(distances.shape[0], dtype=np.bool)
]
average_minority_distance = np.mean( non_diagonal_distances )
if average_minority_distance is 0: average_minority_distance = 1e-1 # to avoid division by 0
density_factor = minority_count / (average_minority_distance ** self.density_power)
sparsity_factors[i] = 1 / density_factor
# prevent division by zero; set zero weights in majority clusters
sparsity_sum = sparsity_factors.sum()
if sparsity_sum == 0:
sparsity_sum = 1 # to avoid division by zero
sparsity_sum = np.full(sparsity_factors.shape, sparsity_sum, np.asarray(sparsity_sum).dtype)
sampling_weights = (sparsity_factors / sparsity_sum)
return sampling_weights
def _fit_resample(self, X, y):
"""Resample the dataset.
Parameters
----------
X : ndarray, shape (n_samples, n_features)
Matrix containing the data which have to be sampled.
y : ndarray, shape (n_samples, )
Corresponding label for each sample in X.
Returns
-------
X_resampled : ndarray, shape (n_samples_new, n_features)
The array containing the resampled data.
y_resampled : ndarray, shape (n_samples_new)
The corresponding labels of ``X_resampled``
"""
self._set_subalgorithm_params()
if self.density_power is None:
self.density_power = X.shape[1]
resampled = [ (X.copy(), y.copy()) ]
sampling_ratio = {k: v for k, v in self.sampling_strategy_.items()}
# sampling_strategy_ does not contain classes where n_samples 0
for class_label in np.unique(y):
if class_label not in sampling_ratio:
sampling_ratio[class_label] = 0
for minority_class_label, n_samples in sampling_ratio.items():
if n_samples == 0:
continue
cluster_assignment = self._cluster(X)
sampling_weights = self._filter_clusters(X, y, cluster_assignment, minority_class_label)
smote_args = self.smote_args.copy()
if np.count_nonzero(sampling_weights) > 0:
# perform k-means smote
for i in np.unique(cluster_assignment):
cluster_X = X[cluster_assignment == i]
cluster_y = y[cluster_assignment == i]
if sampling_weights[i] > 0:
# determine ratio for oversampling the current cluster
target_ratio = {label: np.count_nonzero(cluster_y == label) for label in sampling_ratio}
cluster_minority_count = np.count_nonzero(cluster_y == minority_class_label)
generate_count = int(round(n_samples * sampling_weights[i]))
target_ratio[minority_class_label] = generate_count + cluster_minority_count
# make sure that cluster_y has more than 1 class, adding a random point otherwise
remove_index = -1
if np.unique(cluster_y).size < 2:
remove_index = cluster_y.size
cluster_X = np.append(cluster_X, np.zeros((1,cluster_X.shape[1])), axis=0)
majority_class_label = next( key for key in sampling_ratio.keys() if key != minority_class_label )
target_ratio[majority_class_label] = 1 + target_ratio[majority_class_label]
cluster_y = np.append(cluster_y, np.asarray(majority_class_label).reshape((1,)), axis=0)
# clear target ratio of labels not present in cluster
for label in list(target_ratio.keys()):
if label not in cluster_y:
del target_ratio[label]
# modify copy of the user defined smote_args to reflect computed parameters
smote_args['sampling_strategy'] = target_ratio
smote_args = self._validate_smote_args(smote_args, cluster_minority_count)
oversampler = SMOTE(**smote_args)
# if k_neighbors is 0, perform random oversampling instead of smote
if 'k_neighbors' in smote_args and smote_args['k_neighbors'] == 0:
oversampler_args = {}
if 'random_state' in smote_args:
oversampler_args['random_state'] = smote_args['random_state']
oversampler = RandomOverSampler(**oversampler_args)
# finally, apply smote to cluster
with warnings.catch_warnings():
# ignore warnings about minority class getting bigger than majority class
# since this would only be true within this cluster
warnings.filterwarnings(action='ignore', category=UserWarning, message=r'After over-sampling, the number of samples \(.*\) in class .* will be larger than the number of samples in the majority class \(class #.* \-\> .*\)')
cluster_resampled_X, cluster_resampled_y = oversampler.fit_sample(cluster_X, cluster_y)
if remove_index > -1:
# since SMOTE's results are ordered the same way as the data passed into it,
# the temporarily added point is at the same index position as it was added.
for l in [cluster_resampled_X, cluster_resampled_y, cluster_X, cluster_y]:
np.delete(l, remove_index, 0)
# add new generated samples to resampled
resampled.append( (
cluster_resampled_X[cluster_y.size:,:],
cluster_resampled_y[cluster_y.size:]))
else:
# all weights are zero -> perform regular smote
warnings.warn('No minority clusters found for class {}. Performing regular SMOTE. Try changing the number of clusters.'.format(minority_class_label))
target_ratio = {label: np.count_nonzero(y == label) for label in sampling_ratio}
target_ratio[minority_class_label] = sampling_ratio[minority_class_label]
minority_count = np.count_nonzero(y == minority_class_label)
smote_args = self._validate_smote_args(smote_args, minority_count)
oversampler = SMOTE(**smote_args)
X_smote, y_smote = oversampler.fit_sample(X, y)
resampled.append((
X_smote[y.size:,:],
y_smote[y.size:]))
resampled = list(zip(*resampled))
if(len(resampled) > 0):
X_resampled = np.concatenate(resampled[0], axis=0)
y_resampled = np.concatenate(resampled[1], axis=0)
return X_resampled, y_resampled
def _validate_smote_args(self, smote_args, minority_count):
# determine max number of nearest neighbors considering sample size
max_k_neighbors = minority_count - 1
# check if max_k_neighbors is violated also considering smote's default
smote = SMOTE(**smote_args)
if smote.k_neighbors > max_k_neighbors:
smote_args['k_neighbors'] = max_k_neighbors
smote = SMOTE(**smote_args)
return smote_args
def _set_subalgorithm_params(self):
# copy random_state to sub-algorithms
if self.random_state is not None:
if 'random_state' not in self.smote_args:
self.smote_args['random_state'] = self.random_state
if 'random_state' not in self.kmeans_args:
self.kmeans_args['random_state'] = self.random_state
# copy n_jobs to sub-algorithms
if self.n_jobs is not None:
if 'n_jobs' not in self.smote_args:
self.smote_args['n_jobs'] = self.n_jobs
if 'n_jobs' not in self.kmeans_args:
if not self.use_minibatch_kmeans:
self.kmeans_args['n_jobs'] = self.n_jobs