diff --git a/src/subsampling.jl b/src/subsampling.jl index 736fd6f..460fb64 100644 --- a/src/subsampling.jl +++ b/src/subsampling.jl @@ -7,7 +7,7 @@ Subsampling: Jackknife """ block_jackknife(Y::Union{FloatMatrix, JMatrix{Float64}}, subsample::Float64) -Generate block jackknife (Kunsch, 1989) samples. This implementation is described in Pellegrino (2020). +Generate block jackknife (Kunsch, 1989) samples. This implementation is described in Pellegrino (2022). This technique subsamples a time series dataset by removing, in turn, all the blocks of consecutive observations with a given size. @@ -16,7 +16,7 @@ This technique subsamples a time series dataset by removing, in turn, all the bl - `subsample`: Block size as a percentage of number of observed periods. It is bounded between 0 and 1. # References -Kunsch (1989) and Pellegrino (2020). +Kunsch (1989) and Pellegrino (2022). """ function block_jackknife(Y::Union{FloatMatrix, JMatrix{Float64}}, subsample::Float64) @@ -95,7 +95,7 @@ end """ artificial_jackknife(Y::Union{FloatMatrix, JMatrix{Float64}}, subsample::Float64, max_samples::Int64, seed::Int64=1) -Generate artificial jackknife samples as in Pellegrino (2020). +Generate artificial jackknife samples as in Pellegrino (2022). The artificial delete-d jackknife is an extension of the delete-d jackknife for dependent data problems. - This technique replaces the actual data removal step with a fictitious deletion, which consists of imposing `d`-dimensional (artificial) patterns of missing observations to the data. @@ -108,7 +108,7 @@ The artificial delete-d jackknife is an extension of the delete-d jackknife for - `seed`: Random seed (default: 1). # References -Pellegrino (2020). +Pellegrino (2022). """ function artificial_jackknife(Y::Union{FloatMatrix, JMatrix{Float64}}, subsample::Float64, max_samples::Int64, seed::Int64=1) diff --git a/src/types.jl b/src/types.jl index c6d0ecd..3de5c4a 100644 --- a/src/types.jl +++ b/src/types.jl @@ -45,7 +45,7 @@ The state space model used below is, ``X_{t} = C*X_{t-1} + D*U_{t}`` -where ``e_{t} ~ N(0_{nx1}, R)`` and ``U_{t} ~ N(0_{mx1}, Q)``. +where ``e_{t} \\sim N(0_{nx1}, R)`` and ``U_{t} \\sim N(0_{mx1}, Q)``. # Arguments - `Y`: Observed measurements (`nxT`)