-
Notifications
You must be signed in to change notification settings - Fork 355
/
MMult_4x4_12.c
160 lines (126 loc) · 5.33 KB
/
MMult_4x4_12.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/* Create macros so that the matrices are stored in column-major order */
#define A(i,j) a[ (j)*lda + (i) ]
#define B(i,j) b[ (j)*ldb + (i) ]
#define C(i,j) c[ (j)*ldc + (i) ]
/* Block sizes */
#define mc 256
#define kc 128
#define min( i, j ) ( (i)<(j) ? (i): (j) )
/* Routine for computing C = A * B + C */
void AddDot4x4( int, double *, int, double *, int, double *, int );
void PackMatrixA( int, double *, int, double * );
void MY_MMult( int m, int n, int k, double *a, int lda,
double *b, int ldb,
double *c, int ldc )
{
int i, p, pb, ib;
/* This time, we compute a mc x n block of C by a call to the InnerKernel */
for ( p=0; p<k; p+=kc ){
pb = min( k-p, kc );
for ( i=0; i<m; i+=mc ){
ib = min( m-i, mc );
InnerKernel( ib, n, pb, &A( i,p ), lda, &B(p, 0 ), ldb, &C( i,0 ), ldc );
}
}
}
void InnerKernel( int m, int n, int k, double *a, int lda,
double *b, int ldb,
double *c, int ldc )
{
int i, j;
double
packedA[ m * k ];
for ( j=0; j<n; j+=4 ){ /* Loop over the columns of C, unrolled by 4 */
for ( i=0; i<m; i+=4 ){ /* Loop over the rows of C */
/* Update C( i,j ), C( i,j+1 ), C( i,j+2 ), and C( i,j+3 ) in
one routine (four inner products) */
PackMatrixA( k, &A( i, 0 ), lda, &packedA[ i*k ] );
AddDot4x4( k, &packedA[ i*k ], 4, &B( 0,j ), ldb, &C( i,j ), ldc );
}
}
}
void PackMatrixA( int k, double *a, int lda, double *a_to )
{
int j;
for( j=0; j<k; j++){ /* loop over columns of A */
double
*a_ij_pntr = &A( 0, j );
*a_to++ = *a_ij_pntr;
*a_to++ = *(a_ij_pntr+1);
*a_to++ = *(a_ij_pntr+2);
*a_to++ = *(a_ij_pntr+3);
}
}
#include <mmintrin.h>
#include <xmmintrin.h> // SSE
#include <pmmintrin.h> // SSE2
#include <emmintrin.h> // SSE3
typedef union
{
__m128d v;
double d[2];
} v2df_t;
void AddDot4x4( int k, double *a, int lda, double *b, int ldb, double *c, int ldc )
{
/* So, this routine computes a 4x4 block of matrix A
C( 0, 0 ), C( 0, 1 ), C( 0, 2 ), C( 0, 3 ).
C( 1, 0 ), C( 1, 1 ), C( 1, 2 ), C( 1, 3 ).
C( 2, 0 ), C( 2, 1 ), C( 2, 2 ), C( 2, 3 ).
C( 3, 0 ), C( 3, 1 ), C( 3, 2 ), C( 3, 3 ).
Notice that this routine is called with c = C( i, j ) in the
previous routine, so these are actually the elements
C( i , j ), C( i , j+1 ), C( i , j+2 ), C( i , j+3 )
C( i+1, j ), C( i+1, j+1 ), C( i+1, j+2 ), C( i+1, j+3 )
C( i+2, j ), C( i+2, j+1 ), C( i+2, j+2 ), C( i+2, j+3 )
C( i+3, j ), C( i+3, j+1 ), C( i+3, j+2 ), C( i+3, j+3 )
in the original matrix C
And now we use vector registers and instructions */
int p;
v2df_t
c_00_c_10_vreg, c_01_c_11_vreg, c_02_c_12_vreg, c_03_c_13_vreg,
c_20_c_30_vreg, c_21_c_31_vreg, c_22_c_32_vreg, c_23_c_33_vreg,
a_0p_a_1p_vreg,
a_2p_a_3p_vreg,
b_p0_vreg, b_p1_vreg, b_p2_vreg, b_p3_vreg;
double
/* Point to the current elements in the four columns of B */
*b_p0_pntr, *b_p1_pntr, *b_p2_pntr, *b_p3_pntr;
b_p0_pntr = &B( 0, 0 );
b_p1_pntr = &B( 0, 1 );
b_p2_pntr = &B( 0, 2 );
b_p3_pntr = &B( 0, 3 );
c_00_c_10_vreg.v = _mm_setzero_pd();
c_01_c_11_vreg.v = _mm_setzero_pd();
c_02_c_12_vreg.v = _mm_setzero_pd();
c_03_c_13_vreg.v = _mm_setzero_pd();
c_20_c_30_vreg.v = _mm_setzero_pd();
c_21_c_31_vreg.v = _mm_setzero_pd();
c_22_c_32_vreg.v = _mm_setzero_pd();
c_23_c_33_vreg.v = _mm_setzero_pd();
for ( p=0; p<k; p++ ){
a_0p_a_1p_vreg.v = _mm_load_pd( (double *) &A( 0, p ) );
a_2p_a_3p_vreg.v = _mm_load_pd( (double *) &A( 2, p ) );
b_p0_vreg.v = _mm_loaddup_pd( (double *) b_p0_pntr++ ); /* load and duplicate */
b_p1_vreg.v = _mm_loaddup_pd( (double *) b_p1_pntr++ ); /* load and duplicate */
b_p2_vreg.v = _mm_loaddup_pd( (double *) b_p2_pntr++ ); /* load and duplicate */
b_p3_vreg.v = _mm_loaddup_pd( (double *) b_p3_pntr++ ); /* load and duplicate */
/* First row and second rows */
c_00_c_10_vreg.v += a_0p_a_1p_vreg.v * b_p0_vreg.v;
c_01_c_11_vreg.v += a_0p_a_1p_vreg.v * b_p1_vreg.v;
c_02_c_12_vreg.v += a_0p_a_1p_vreg.v * b_p2_vreg.v;
c_03_c_13_vreg.v += a_0p_a_1p_vreg.v * b_p3_vreg.v;
/* Third and fourth rows */
c_20_c_30_vreg.v += a_2p_a_3p_vreg.v * b_p0_vreg.v;
c_21_c_31_vreg.v += a_2p_a_3p_vreg.v * b_p1_vreg.v;
c_22_c_32_vreg.v += a_2p_a_3p_vreg.v * b_p2_vreg.v;
c_23_c_33_vreg.v += a_2p_a_3p_vreg.v * b_p3_vreg.v;
}
C( 0, 0 ) += c_00_c_10_vreg.d[0]; C( 0, 1 ) += c_01_c_11_vreg.d[0];
C( 0, 2 ) += c_02_c_12_vreg.d[0]; C( 0, 3 ) += c_03_c_13_vreg.d[0];
C( 1, 0 ) += c_00_c_10_vreg.d[1]; C( 1, 1 ) += c_01_c_11_vreg.d[1];
C( 1, 2 ) += c_02_c_12_vreg.d[1]; C( 1, 3 ) += c_03_c_13_vreg.d[1];
C( 2, 0 ) += c_20_c_30_vreg.d[0]; C( 2, 1 ) += c_21_c_31_vreg.d[0];
C( 2, 2 ) += c_22_c_32_vreg.d[0]; C( 2, 3 ) += c_23_c_33_vreg.d[0];
C( 3, 0 ) += c_20_c_30_vreg.d[1]; C( 3, 1 ) += c_21_c_31_vreg.d[1];
C( 3, 2 ) += c_22_c_32_vreg.d[1]; C( 3, 3 ) += c_23_c_33_vreg.d[1];
}