-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathdemo.py
47 lines (39 loc) · 1.55 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
# import the necessary packages
import json
import os
import random
import cv2 as cv
import keras.backend as K
import numpy as np
import scipy.io
from utils import load_model
if __name__ == '__main__':
img_width, img_height = 224, 224
model = load_model()
model.load_weights('models/model.96-0.89.hdf5')
cars_meta = scipy.io.loadmat('devkit/cars_meta')
class_names = cars_meta['class_names'] # shape=(1, 196)
class_names = np.transpose(class_names)
test_path = 'data/test/'
test_images = [f for f in os.listdir(test_path) if
os.path.isfile(os.path.join(test_path, f)) and f.endswith('.jpg')]
num_samples = 20
samples = random.sample(test_images, num_samples)
results = []
for i, image_name in enumerate(samples):
filename = os.path.join(test_path, image_name)
print('Start processing image: {}'.format(filename))
bgr_img = cv.imread(filename)
bgr_img = cv.resize(bgr_img, (img_width, img_height), cv.INTER_CUBIC)
rgb_img = cv.cvtColor(bgr_img, cv.COLOR_BGR2RGB)
rgb_img = np.expand_dims(rgb_img, 0)
preds = model.predict(rgb_img)
prob = np.max(preds)
class_id = np.argmax(preds)
text = ('Predict: {}, prob: {}'.format(class_names[class_id][0][0], prob))
results.append({'label': class_names[class_id][0][0], 'prob': '{:.4}'.format(prob)})
cv.imwrite('images/{}_out.png'.format(i), bgr_img)
print(results)
with open('results.json', 'w') as file:
json.dump(results, file, indent=4)
K.clear_session()