-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathtest.py
34 lines (28 loc) · 1004 Bytes
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import os
import time
import cv2 as cv
import keras.backend as K
import numpy as np
from console_progressbar import ProgressBar
from utils import load_model
if __name__ == '__main__':
model = load_model()
pb = ProgressBar(total=100, prefix='Predicting test data', suffix='', decimals=3, length=50, fill='=')
num_samples = 8041
start = time.time()
out = open('result.txt', 'a')
for i in range(num_samples):
filename = os.path.join('data/test', '%05d.jpg' % (i + 1))
bgr_img = cv.imread(filename)
rgb_img = cv.cvtColor(bgr_img, cv.COLOR_BGR2RGB)
rgb_img = np.expand_dims(rgb_img, 0)
preds = model.predict(rgb_img)
prob = np.max(preds)
class_id = np.argmax(preds)
out.write('{}\n'.format(str(class_id + 1)))
pb.print_progress_bar((i + 1) * 100 / num_samples)
end = time.time()
seconds = end - start
print('avg fps: {}'.format(str(num_samples / seconds)))
out.close()
K.clear_session()