-
Notifications
You must be signed in to change notification settings - Fork 20
/
main.py
158 lines (120 loc) · 6.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
from __future__ import print_function
import os
import tensorflow as tf
import numpy as np
import input_data
flags = tf.app.flags
FLAGS = flags.FLAGS
# define flags (note that Fomoro will not pass any flags by default)
flags.DEFINE_boolean('skip-training', False, 'If true, skip training the model.')
flags.DEFINE_boolean('restore', False, 'If true, restore the model from the latest checkpoint.')
# define artifact directories where results from the session can be saved
model_path = os.environ.get('MODEL_PATH', 'models/')
checkpoint_path = os.environ.get('CHECKPOINT_PATH', 'checkpoints/')
summary_path = os.environ.get('SUMMARY_PATH', 'logs/')
mnist = input_data.read_data_sets('mnist', one_hot=True)
def weight_bias(W_shape, b_shape, bias_init=0.1):
W = tf.Variable(tf.truncated_normal(W_shape, stddev=0.1), name='weight')
b = tf.Variable(tf.constant(bias_init, shape=b_shape), name='bias')
return W, b
def dense_layer(x, W_shape, b_shape, activation):
W, b = weight_bias(W_shape, b_shape)
return activation(tf.matmul(x, W) + b)
def conv2d_layer(x, W_shape, b_shape, strides, padding):
W, b = weight_bias(W_shape, b_shape)
return tf.nn.relu(tf.nn.conv2d(x, W, strides, padding) + b)
def highway_conv2d_layer(x, W_shape, b_shape, strides, padding, carry_bias=-1.0):
W, b = weight_bias(W_shape, b_shape, carry_bias)
W_T, b_T = weight_bias(W_shape, b_shape)
H = tf.nn.relu(tf.nn.conv2d(x, W, strides, padding) + b, name='activation')
T = tf.sigmoid(tf.nn.conv2d(x, W_T, strides, padding) + b_T, name='transform_gate')
C = tf.sub(1.0, T, name="carry_gate")
return tf.add(tf.mul(H, T), tf.mul(x, C), 'y') # y = (H * T) + (x * C)
with tf.Graph().as_default(), tf.Session() as sess:
x = tf.placeholder("float", [None, 784])
y_ = tf.placeholder("float", [None, 10])
carry_bias_init = -1.0
x_image = tf.reshape(x, [-1, 28, 28, 1]) # reshape for conv
keep_prob1 = tf.placeholder("float", name="keep_prob1")
x_drop = tf.nn.dropout(x_image, keep_prob1)
prev_y = conv2d_layer(x_drop, [5, 5, 1, 32], [32], [1, 1, 1, 1], 'SAME')
prev_y = highway_conv2d_layer(prev_y, [3, 3, 32, 32], [32], [1, 1, 1, 1], 'SAME', carry_bias=carry_bias_init)
prev_y = highway_conv2d_layer(prev_y, [3, 3, 32, 32], [32], [1, 1, 1, 1], 'SAME', carry_bias=carry_bias_init)
prev_y = tf.nn.max_pool(prev_y, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')
keep_prob2 = tf.placeholder("float", name="keep_prob2")
prev_y = tf.nn.dropout(prev_y, keep_prob2)
prev_y = highway_conv2d_layer(prev_y, [3, 3, 32, 32], [32], [1, 1, 1, 1], 'SAME', carry_bias=carry_bias_init)
prev_y = highway_conv2d_layer(prev_y, [3, 3, 32, 32], [32], [1, 1, 1, 1], 'SAME', carry_bias=carry_bias_init)
prev_y = highway_conv2d_layer(prev_y, [3, 3, 32, 32], [32], [1, 1, 1, 1], 'SAME', carry_bias=carry_bias_init)
prev_y = tf.nn.max_pool(prev_y, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME')
keep_prob3 = tf.placeholder("float", name="keep_prob3")
prev_y = tf.nn.dropout(prev_y, keep_prob3)
prev_y = highway_conv2d_layer(prev_y, [3, 3, 32, 32], [32], [1, 1, 1, 1], 'SAME', carry_bias=carry_bias_init)
prev_y = highway_conv2d_layer(prev_y, [3, 3, 32, 32], [32], [1, 1, 1, 1], 'SAME', carry_bias=carry_bias_init)
prev_y = highway_conv2d_layer(prev_y, [3, 3, 32, 32], [32], [1, 1, 1, 1], 'SAME', carry_bias=carry_bias_init)
prev_y = tf.nn.max_pool(prev_y, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
keep_prob4 = tf.placeholder("float", name="keep_prob4")
prev_y = tf.nn.dropout(prev_y, keep_prob4)
prev_y = tf.reshape(prev_y, [-1, 4 * 4 * 32])
y = dense_layer(prev_y, [4 * 4 * 32, 10], [10], tf.nn.softmax)
# define training and accuracy operations
with tf.name_scope("loss") as scope:
loss = -tf.reduce_sum(y_ * tf.log(y))
tf.scalar_summary("loss", loss)
with tf.name_scope("train") as scope:
train_step = tf.train.GradientDescentOptimizer(1e-2).minimize(loss)
with tf.name_scope("test") as scope:
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
tf.scalar_summary('accuracy', accuracy)
merged_summaries = tf.merge_all_summaries()
# create a saver instance to restore from the checkpoint
saver = tf.train.Saver(max_to_keep=1)
# initialize our variables
sess.run(tf.initialize_all_variables())
# save the graph definition as a protobuf file
tf.train.write_graph(sess.graph_def, model_path, 'highway.pb', as_text=False)
# restore variables
if FLAGS.restore:
latest_checkpoint_path = tf.train.latest_checkpoint(checkpoint_path)
if latest_checkpoint_path:
saver.restore(sess, latest_checkpoint_path)
if not FLAGS.skip_training:
summary_writer = tf.train.SummaryWriter(summary_path, sess.graph_def)
num_steps = 5000
checkpoint_interval = 100
batch_size = 50
step = 0
for i in range(num_steps):
batch_xs, batch_ys = mnist.train.next_batch(batch_size)
if step % checkpoint_interval == 0:
validation_accuracy, summary = sess.run([accuracy, merged_summaries], feed_dict={
x: mnist.validation.images,
y_: mnist.validation.labels,
keep_prob1: 1.0,
keep_prob2: 1.0,
keep_prob3: 1.0,
keep_prob4: 1.0,
})
summary_writer.add_summary(summary, step)
saver.save(sess, checkpoint_path + 'checkpoint', global_step=step)
print('step %d, training accuracy %g' % (step, validation_accuracy))
sess.run(train_step, feed_dict={
x: batch_xs,
y_: batch_ys,
keep_prob1: 0.8,
keep_prob2: 0.7,
keep_prob3: 0.6,
keep_prob4: 0.5,
})
step += 1
summary_writer.close()
test_accuracy = sess.run(accuracy, feed_dict={
x: mnist.test.images,
y_: mnist.test.labels,
keep_prob1: 1.0,
keep_prob2: 1.0,
keep_prob3: 1.0,
keep_prob4: 1.0,
})
print('test accuracy %g' % test_accuracy)