-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
195 lines (147 loc) · 7.16 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import re
import sys
import unittest
import importlib
from pathlib import Path
import torch
import torch.nn.functional as F
# Import tqdm if installed
try:
from tqdm import tqdm
except ImportError:
tqdm = lambda x: x
# Check python version
version = sys.version_info[:2]
if version < (3, 6):
raise RuntimeError("This script uses f-strings, which requires Python version >= 3.6. Use a newer version of Python.")
"""
Note to students:
1. If you want to import files from the "others" folder
(e.g. from "others/nn.py"), you should write the import statement as:
from .others.nn import Module
2. To load your saved model, you can use the following code:
from pathlib import Path
model_path = Path(__file__).parent / "bestmodel.pth"
model = torch.load(model_path)
3. Run this script with the command:
python3 test.py -d path_to_data_folder -p path_to_root_project_folder
4. More tests will be present in the final test.py that we will be running
"""
class Tests(unittest.TestCase):
@staticmethod
def compute_psnr(x, y, max_range=1.0):
assert x.shape == y.shape and x.ndim == 4
return 20 * torch.log10(torch.tensor(max_range)) - 10 * torch.log10(((x-y) ** 2).mean((1, 2, 3))).mean()
def test_folder_structure(self):
title("Testing folder structure")
self.assertTrue(project_path.exists(), f"No folder found at {project_path}")
self._test_folder_structure(1)
self._test_folder_structure(2)
def _test_folder_structure(self, project_number):
miniproject_path = project_path / f"Miniproject_{project_number}"
self.assertTrue(miniproject_path.exists(), f"No folder Miniproject_{project_number} found at {project_path}")
for file in ["__init__.py", "model.py"]:
with self.subTest(f"Checking file {file} for project {project_number}"):
self.assertTrue((miniproject_path / file).exists(), f"No file {file} found at {miniproject_path}")
for file in [f"Report_{project_number}.pdf", "bestmodel.pth"]:
if not (miniproject_path / file).exists():
warn(f"Miniproject folder {project_number} does not contain a {file} file")
def test_instantiate_model_class(self):
title("Testing model class instantiation")
for i in [1,2]:
with self.subTest(f"Checking instantiate model class for project {i}"):
self._test_instantiate_model_class(i)
def _test_instantiate_model_class(self, project_number):
model = importlib.import_module(f"Miniproject_{project_number}.model")
model.Model()
def test_forward_dummy_input(self):
title("Testing forward dummy input")
for i in [1,2]:
with self.subTest(f"Checking forward dummy input for project {i}"):
self._test_forward_dummy_input(i)
def _test_forward_dummy_input(self, project_number):
Model = importlib.import_module(f"Miniproject_{project_number}.model").Model
model = Model()
out = model.predict(torch.rand(1, 3, 512, 512) * 255)
self.assertEqual(out.shape, (1, 3, 512, 512))
self.assertGreaterEqual(out.min(), 0)
self.assertLessEqual(out.max(), 255)
if out.max() <= 1:
warn("The output of the predict function should be a Tensor in the range [0, 255]")
def test_model_pnsr(self):
title("Testing pretrained model")
for i in [1,2]:
with self.subTest(f"Testing pretrained model for project {i}"):
self._test_model_pnsr(i)
def _test_model_pnsr(self, project_number):
Model = importlib.import_module(f"Miniproject_{project_number}.model").Model
model = Model()
model.load_pretrained_model()
val_path = data_path / "val_data.pkl"
val_input, val_target = torch.load(val_path)
val_target = val_target.float() / 255.0
mini_batch_size = 100
model_outputs = []
for b in tqdm(range(0, val_input.size(0), mini_batch_size)):
output = model.predict(val_input.narrow(0, b, mini_batch_size))
model_outputs.append(output.cpu())
model_outputs = torch.cat(model_outputs, dim=0) / 255.0
output_psnr = self.compute_psnr(model_outputs, val_target)
print(f"[PSNR {project_number}: {output_psnr:.2f} dB]")
def test_train_model(self):
title("Testing model training")
for i in [1,2]:
with self.subTest(f"Testing model training for project {i}"):
self._test_train_model(i)
def _test_train_model(self, project_number):
Model = importlib.import_module(f"Miniproject_{project_number}.model").Model
model = Model()
model.load_pretrained_model()
train_path = data_path / "train_data.pkl"
val_path = data_path / "val_data.pkl"
train_input0, train_input1 = torch.load(train_path)
val_input, val_target = torch.load(val_path)
val_target = val_target.float() / 255.0
output_psnr_before = self.compute_psnr(val_input, val_target)
model.train(train_input0, train_input1, num_epochs=1)
mini_batch_size = 100
model_outputs = []
for b in tqdm(range(0, val_input.size(0), mini_batch_size)):
output = model.predict(val_input.narrow(0, b, mini_batch_size))
model_outputs.append(output.cpu())
model_outputs = torch.cat(model_outputs, dim=0) / 255.0
output_psnr_after = self.compute_psnr(model_outputs, val_target)
print(f"[PSNR {project_number}: {output_psnr_after:.2f} dB]")
self.assertGreater(output_psnr_after, output_psnr_before)
def test_framework_block(self):
title("Testing blocks")
model_module = importlib.import_module(f"Miniproject_2.model")
x = torch.randn(1, 3, 32, 32)
with self.subTest("Testing convolution"):
Conv2d = model_module.Conv2d
conv = Conv2d(3, 3, 3)
self.assertTrue(torch.allclose(conv.forward(x), F.conv2d(x, conv.weight, conv.bias)))
with self.subTest("Testing sigmoid"):
Sigmoid = model_module.Sigmoid
sigmoid = Sigmoid()
self.assertTrue(torch.allclose(sigmoid.forward(x), torch.sigmoid(x)))
with self.subTest("Testing sequential"):
Sequential = model_module.Sequential
seq = Sequential(conv, sigmoid)
self.assertTrue(torch.allclose(seq.forward(x), F.conv2d(x, conv.weight, conv.bias).sigmoid()))
def warn(msg):
print(f"\33[33m!!! Warning: {msg}\33[39m")
def title(msg):
print(f"\n=============\n> {msg} ...")
if __name__ == '__main__':
from argparse import ArgumentParser
parser = ArgumentParser()
parser.add_argument('-p', '--project-path', help='Path to the project folder', required=True)
parser.add_argument('-d', '--data-path', help='Path to the data folder', required=True)
args = parser.parse_args()
project_path = Path(args.project_path)
data_path = Path(args.data_path)
if re.match(r'^Proj(_(\d{6})){3}$', project_path.name) is None:
warn("Project folder name must be in the form Proj_XXXXXX_XXXXXX_XXXXXX")
sys.path.append(args.project_path)
unittest.main(argv=[''], verbosity=1000)