-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathprepare_training.py
150 lines (121 loc) · 5.27 KB
/
prepare_training.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import os
import sys
from shutil import copyfile, rmtree
import configargparse
import configparser
import click
import numpy as np
p = configargparse.ArgParser()
p.add('-d', '--base_dir', required=True,
help='base directory for storing synister experiments')
p.add('-e', required=True, help='name of the experiment, e.g. fafb')
p.add('-t', required=True, help='train number/id for this particular run')
p.add('-c', required=False, action='store_true', help='clean up - remove specified train setup')
def set_up_environment(base_dir,
experiment,
train_number,
clean_up=False):
''' Sets up the directory structure and config file for
training a network for microtubule prediction.
Args:
base_dir (``string``):
The base directory for storing all micron related experiments and data.
experiment (``string``):
The name of the experiment this training run belongs to.
train_number (``int``):
The number/id of the training run.
clean_up (``bool``):
If true removes the specified train directory
'''
base_dir = os.path.expanduser(base_dir)
setup_dir = os.path.join(base_dir, experiment, "02_train/setup_t{}".format(train_number))
if clean_up:
if __name__ == "__main__":
if click.confirm('Are you sure you want to remove {} and all its contents?'.format(setup_dir), default=False):
rmtree(setup_dir)
else:
print("Abort clean up.")
return
else:
rmtree(setup_dir)
else:
if not (os.path.exists(setup_dir)):
try:
os.makedirs(setup_dir)
except:
raise ValueError("Cannot create setup {}, path invalid".format(setup_dir))
else:
raise ValueError("Cannot create setup {}, setup exists already.".format(setup_dir))
this_dir = os.path.dirname(__file__)
copyfile(os.path.join(this_dir, "synister/train.py"), os.path.join(setup_dir, "train.py"))
copyfile(os.path.join(this_dir, "synister/train_pipeline.py"), os.path.join(setup_dir, "train_pipeline.py"))
train_config = create_train_config()
worker_config = create_worker_config(mount_dirs="/nrs, /scratch, /groups, /misc",
singularity=os.path.abspath("singularity/synister.img"),
queue=None)
with open(os.path.join(setup_dir, "train_config.ini"), "w+") as f:
train_config.write(f)
with open(os.path.join(setup_dir, "worker_config.ini"), "w+") as f:
worker_config.write(f)
def create_train_config():
default_synapse_types = [
'gaba',
'acetylcholine',
'glutamate',
'serotonin',
'octopamine',
'dopamine']
config = configparser.ConfigParser()
config.add_section('Training')
synapse_types_string = ""
for s in default_synapse_types:
synapse_types_string += s + ", "
synapse_types_string = synapse_types_string[:-2]
config.set('Training', 'synapse_types', synapse_types_string)
config.set('Training', 'input_shape', '16, 160, 160')
config.set('Training', 'fmaps', '16')
config.set('Training', 'batch_size', '8')
config.set('Training', 'db_credentials', str(None))
config.set('Training', 'db_name_data', str(None))
config.set('Training', 'split_name', str(None))
config.set('Training', 'voxel_size', "40, 4, 4")
config.set('Training', 'raw_container', "/nrs/saalfeld/FAFB00/v14_align_tps_20170818_dmg.n5")
config.set('Training', 'raw_dataset', "volumes/raw/s0")
config.set('Training', 'neither_class', 'False')
config.set('Training', 'downsample_factors', "(1,2,2), (1,2,2), (1,2,2), (2,2,2)")
config.set('Training', 'network', "VGG")
config.set('Training', 'fmap_inc', "2, 2, 2, 2")
config.set('Training', 'n_convolutions', "2, 2, 2, 2")
config.set('Training', 'network_appendix', "None")
return config
def create_worker_config(mount_dirs,
singularity,
queue):
config = configparser.ConfigParser()
config.add_section('Worker')
if singularity == None or singularity == "None" or not singularity:
config.set('Worker', 'singularity_container', str(None))
else:
config.set('Worker', 'singularity_container', str(singularity))
config.set('Worker', 'num_cpus', str(5))
config.set('Worker', 'num_block_workers', str(1))
config.set('Worker', 'num_cache_workers', str(5))
if queue == None or queue == "None" or not queue:
config.set('Worker', 'queue', str(None))
else:
config.set('Worker', 'queue', str(queue))
if mount_dirs == None or mount_dirs == "None" or not mount_dirs:
config.set('Worker', 'mount_dirs', "None")
else:
config.set('Worker', 'mount_dirs', mount_dirs)
return config
if __name__ == "__main__":
options = p.parse_args()
base_dir = options.base_dir
experiment = options.e
train_number = int(options.t)
clean_up = bool(options.c)
set_up_environment(base_dir,
experiment,
train_number,
clean_up)