-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplotting.py
126 lines (100 loc) · 4.62 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
"""
Use with saved model.
Produces the current sweep and latent space plots
"""
from src.models import DIVA
from src.data import MemMapDataset_O
from src.data._utils import get_dataloaders
from src.common.utils import load_model
from src.common.physics_approximations import *
import torch
import numpy as np
import matplotlib.pyplot as plt
import matplotlib as mpl
MP_names_JET = ['BTF', 'D_tot', 'IpiFP', 'PNBI_TOT', 'P_OH', 'PICR_TOT', 'k', 'delRoben', 'delRuntn', 'ahor', 'Rgeo', 'q95', 'Vol', 'elm_timings']
def main(model_name):
state_dict, hparams, dataset = load_model(model_name)
model = DIVA(**hparams)
model.load_state_dict(state_dict)
model.double()
current_sweep_plot(model, dataset)
latent_space_plot(model, dataset)
def latent_space_plot(model, dataset):
Z_MACH, Z_STOCH = [], []
for idx in range(dataset.total_num_pulses // 2):
sample_profs, sample_mps = torch.from_numpy(dataset.data['profs'][idx].copy()), torch.from_numpy(dataset.data['mps'][idx].copy())
sample_profs_norm, sample_mps_norm = dataset.norm_profiles(sample_profs), dataset.norm_mps(sample_mps)
with torch.no_grad():
_,z_mach, z_stoch, *_ = model.prof2z(sample_profs_norm)
Z_MACH.extend(z_mach)
Z_STOCH.extend(z_stoch)
Z_MACH, Z_STOCH = torch.vstack(Z_MACH), torch.vstack(Z_STOCH)
image_res = 512
sample_size = image_res ** 2 # 2D
r1, r2 = -5, 5
a, b = sample_size, 2
ld_1, ld_2 = 0, 2
range_xy = torch.linspace(start=r1, end=r2, steps=image_res)
range_xy = torch.cartesian_prod(range_xy, range_xy)
range_imagecoord = torch.linspace(0, image_res-1, steps=image_res, dtype=torch.int32) # so we can easily go back
range_imagecoord = torch.cartesian_prod(range_imagecoord, range_imagecoord)
z_mach_mean, z_stoch_mean = Z_MACH.mean(0), Z_STOCH.mean(0)
z_mach_sample, z_stoch_sample = torch.tile(z_mach_mean, (sample_size, 1)), torch.tile(z_stoch_mean, (sample_size, 1))
z_mach_sample[:, ld_1] = range_xy[:, 0]
z_mach_sample[:, ld_2] = range_xy[:, 1]
image_array = np.zeros((image_res, image_res))
with torch.no_grad():
z_conditional = torch.cat((z_mach_sample, z_stoch_sample), 1)
out_profs = model.z2prof(z_conditional)
out_mps = model.z2mp(z_mach_sample)
sample_profs, sample_mps = dataset.denorm_profiles(out_profs), dataset.denorm_mps(out_mps)
sample_teseps, sample_neseps, sample_rseps = find_tesep(sample_profs)
image_array = np.zeros((image_res, image_res))
for i in range(range_imagecoord.shape[0]):
_x, _y = range_imagecoord[i]
_y = image_res - 1 - _y # (0, 0) for img are on top left so reverse
image_array[_y, _x] = sample_neseps[i]
sample_zx, sample_zy = 2, 0 #The star on th graph
data_sample = torch.tensor([sample_zx, sample_zy])
min_i = -1
min_dist = 100000
for i in range(range_xy.shape[0]):
a = data_sample.cpu().numpy()
b = range_xy[i].cpu().numpy()
dist = np.linalg.norm(a-b)
if dist < min_dist:
min_dist = dist
min_i = i
sample_1 = min_i
fig, ls_ax,= plt.subplots(constrained_layout=True)
cmap = mpl.cm.plasma
norm = mpl.colors.Normalize(vmin=0, vmax=1e20)
""" LATENT SPACE PLOT """
cax = ls_ax.imshow(np.rot90(image_array, 3), extent=[r1, r2, r1, r2], cmap=cmap, norm=norm, interpolation='spline36')
fig.colorbar(cax, ax=ls_ax, label='Inferred $n_e^{sep}$ [m$^{-3}$]', location='left')
ls_ax.set_xlabel('Latent Dimension 4')
ls_ax.set_ylabel('Latent Dimension 6')
plt.show()
def current_sweep_plot(model, dataset):
MEAN_MP = []
for idx in range(dataset.total_num_pulses // 2):
sample_profs, sample_mps = torch.from_numpy(dataset.data['profs'][idx].copy()), torch.from_numpy(dataset.data['mps'][idx].copy())
MEAN_MP.append(sample_mps)
MEAN_MP = torch.vstack(MEAN_MP).mean(0)
N_SAMPLES = 1000
current_sweep = torch.linspace(1e6, 5e6, N_SAMPLES)
MP_IN = torch.tile(MEAN_MP, (N_SAMPLES, 1))
MP_IN[:, 2] = current_sweep
cmap = mpl.cm.viridis
norm = mpl.colors.Normalize(vmin=0, vmax=6e6)
with torch.no_grad():
out_profs_norm, _, _ = model.inference(dataset.norm_mps(MP_IN), from_mean=False)
out_profs = dataset.denorm_profiles(out_profs_norm)
fig = plt.figure()
for k, sample in enumerate(out_profs):
plt.plot(sample[0], color=cmap(norm(current_sweep[k])))
fig.colorbar(mpl.cm.ScalarMappable(norm=norm, cmap=cmap),orientation='horizontal', label='$I_P$ [MA]')
plt.show()
if __name__ == '__main__':
model_name = 'DIVA.pth'
main(model_name)