-
Notifications
You must be signed in to change notification settings - Fork 59
/
Copy pathGpRandomGen.pas
317 lines (277 loc) · 8.93 KB
/
GpRandomGen.pas
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
(*:RANMAR pseudo-random number generator
This random number generator originally appeared in "Toward a Universal
Random Number Generator" by George Marsaglia and Arif Zaman.
Florida State University Report: FSU-SCRI-87-50 (1987)
It was later modified by F. James and published in "A Review of Pseudo-
random Number Generators"
THIS IS THE BEST KNOWN RANDOM NUMBER GENERATOR AVAILABLE.
(However, a newly discovered technique can yield
a period of 10^600. But that is still in the development stage.)
It passes ALL of the tests for random number generators and has a period
of 2^144, is completely portable (gives bit identical results on all
machines with at least 24-bit mantissas in the floating point
representation).
The algorithm is a combination of a Fibonacci sequence (with lags of 97
and 33, and operation "subtraction plus one, modulo one") and an
"arithmetic sequence" (using subtraction).
========================================================================
C language version was written by Jim Butler, and was based on a
FORTRAN program posted by David LaSalle of Florida State University.
Adapted for Delphi by Anton Zhuchkov (fireton@mail.ru) in February, 2002.
Converted into a class by Primoz Gabrijelcic (gabr@17slon.com) in November, 2002.
@desc <pre>
Free for personal and commercial use. No rights reserved.
Programming : Primoz Gabrijelcic
Creation date : 2002-11-17
Last modification : 2018-01-15
Version : 2.0
</pre>*)(*
History:
2.0: 2018-01-15
- Global functions are now threadsafe.
- Microsoft Crypto API: Next Generation is used in Randomize.
1.01: 2004-04-01
- Added protected functions SaveState and RestoreState.
1.0: 2002-11-17
- Released.
*)
unit GpRandomGen;
interface
uses
Classes;
const
MaxRnd = 1073741822;
type
TGpRandom = class
private
u: array [0..97] of double;
c, cd, cm: double;
i97, j97: integer;
protected
// intentionally hard to reach ...
function RestoreState(stream: TStream): boolean;
procedure SaveState(stream: TStream);
public
//:Create and initialize with known seed.
constructor Create(seed1, seed2: longint); overload;
//:Create and initialize with pseudo-random seed (from the Delphi's generator).
constructor Create; overload;
//:Initialize generator with known seeds.
procedure Randomize(seed1, seed2: longint); overload;
//:Initialize generator with pseudo-random seeds (from the Delphi's generator).
procedure Randomize; overload;
//:Wrapper around Random that returns longwords.
function Rnd: longword;
//:Wrapper around Random that returns int64s.
function Rnd64: int64;
{:This is the random number generator proposed by George Marsaglia in
Florida State University Report: FSU-SCRI-87-50}
function Random: double;
end; { TGpRandom }
procedure GpRandomize(seed1, seed2: longint); overload;
procedure GpRandomize; overload;
function GpRnd: longword;
function GpRnd64: int64;
function GpRandom: double;
implementation
uses
SysUtils,
JwaBCrypt;
var
GGpRandom: TGpRandom;
procedure GpRandomize(seed1, seed2: longint);
begin
TMonitor.Enter(GGpRandom);
try
GGpRandom.Randomize(seed1, seed2);
finally
TMonitor.Exit(GGpRandom);
end;
end; { GpRandomize }
procedure GpRandomize;
begin
TMonitor.Enter(GGpRandom);
try
GGpRandom.Randomize;
finally
TMonitor.Exit(GGpRandom);
end;
end; { GpRandomize }
function GpRnd: longword;
begin
TMonitor.Enter(GGpRandom);
try
Result := GGpRandom.Rnd;
finally
TMonitor.Exit(GGpRandom);
end;
end; { GpRnd }
function GpRnd64: int64;
begin
TMonitor.Enter(GGpRandom);
try
Result := GGpRandom.Rnd64;
finally
TMonitor.Exit(GGpRandom);
end;
end; { GpRnd64 }
function GpRandom: double;
begin
TMonitor.Enter(GGpRandom);
try
Result := GGpRandom.Random;
finally
TMonitor.Exit(GGpRandom);
end;
end; { GpRandom }
{ TGpRandom }
constructor TGpRandom.Create(seed1, seed2: Integer);
begin
Randomize(seed1, seed2);
end; { TGpRandom.Create }
constructor TGpRandom.Create;
begin
Randomize;
end; { TGpRandom.Create }
function TGpRandom.Random: double;
begin
Result := u[i97] - u[j97];
if (Result < 0.0) then
Result := Result + 1.0;
u[i97] := Result;
Dec(i97);
if i97 = 0 then
i97 := 97;
dec(j97);
if j97 = 0 then
j97 := 97;
c := c - cd;
if c < 0.0 then
c := c + cm;
Result := Result - c;
if Result < 0.0 then
Result := Result + 1.0;
end; { TGpRandom.Random }
procedure TGpRandom.Randomize;
function CNGRandomize: boolean;
const
BCRYPT_USE_SYSTEM_PREFERRED_RNG = 2;
var
seed1: word;
seed2: word;
begin
repeat
if BCryptGenRandom(0, @seed1, SizeOf(seed1), BCRYPT_USE_SYSTEM_PREFERRED_RNG) <> 0 then
Exit(false);
until seed1 < 31329;
repeat
if BCryptGenRandom(0, @seed2, SizeOf(seed2), BCRYPT_USE_SYSTEM_PREFERRED_RNG) <> 0 then
Exit(false);
until seed2 < 30082;
Randomize(seed1, seed2);
Result := true;
end; { CNGRandomize }
begin
if not CNGRandomize then
Randomize(System.Random(31329), System.Random(30082));
end; { TGpRandom.Randomize }
{:This is the initialization routine for the random number generator RANMAR()
NOTE: The seed variables can have values between: 0 <= seed1 <= 31328
0 <= seed2 <= 30081
The random number sequences created by these two seeds are of sufficient
length to complete an entire calculation with. For example, if several
different groups are working on different parts of the same calculation,
each group could be assigned its own seed1 seed. This would leave each group
with 30000 choices for the second seed. That is to say, this random
number generator can create 900 million different subsequences -- with
each subsequence having a length of approximately 10^30.
Use seed1 = 1802 & seed2 = 9373 to test the random number generator. The
subroutine RANMAR should be used to generate 20000 random numbers.
Then display the next six random numbers generated multiplied by 4096*4096
If the random number generator is working properly, the random numbers
should be:
6533892.0 14220222.0 7275067.0
6172232.0 8354498.0 10633180.0
}
procedure TGpRandom.Randomize(seed1, seed2: integer);
var
i, j, k, l, ii, jj, m : integer;
s, t : double;
begin
if (seed1<0) or (seed1>31328) or (seed2<0) or (seed2>30081) then
raise Exception.Create('Random generator seed not within the valid range!');
i := (seed1 div 177) mod 177 + 2;
j := seed1 mod 177 + 2;
k := (seed2 div 169) mod 178 + 1;
l := seed2 mod 169;
for ii := 1 to 97 do begin
s := 0.0;
t := 0.5;
for jj := 1 to 24 do begin
m := (((i*j) mod 179)*k) mod 179;
i := j;
j := k;
k := m;
l := (53*l + 1) mod 169;
if ((l*m) mod 64 >= 32) then
s := s + t;
t := t*0.5;
end;
u[ii] := s;
end;
c := 362436.0 / 16777216.0;
cd := 7654321.0 / 16777216.0;
cm := 16777213.0 / 16777216.0;
i97 := 97;
j97 := 33;
end; { TGpRandom.Randomize }
{:Restores random generator internal state from the stream.
@returns False if stream was too short.
@since 2004-04-01
}
function TGpRandom.RestoreState(stream: TStream): boolean;
begin
Result := false;
if stream.Read(u, Length(u)*SizeOf(double)) <> Length(u)*SizeOf(double) then Exit;
if stream.Read(c, SizeOf(double)) <> SizeOf(double) then Exit;
if stream.Read(cd, SizeOf(double)) <> SizeOf(double) then Exit;
if stream.Read(cm, SizeOf(double)) <> SizeOf(double) then Exit;
if stream.Read(i97, SizeOf(integer)) <> SizeOf(integer) then Exit;
if stream.Read(j97, SizeOf(integer)) <> SizeOf(integer) then Exit;
Result := true;
end; { TGpRandom.RestoreState }
function TGpRandom.Rnd: longword;
begin
Result :=
(Trunc((High(Word)+1)*Random) SHL 16) OR
Trunc((High(Word)+1)*Random);
end; { TGpRandom.Rnd }
function TGpRandom.Rnd64: int64;
var
r32: longword;
r64: int64;
begin
r32 := Rnd;
Move(r32, r64, 4);
r32 := Rnd;
Move(r32, pointer(cardinal(@r64)+4)^, 4);
Result := r64;
end; { TGpRandom.Rnd64 }
{:Saves random generator internal state to the stream.
@since 2004-04-01
}
procedure TGpRandom.SaveState(stream: TStream);
begin
stream.Write(u, Length(u)*SizeOf(double));
stream.Write(c, SizeOf(double));
stream.Write(cd, SizeOf(double));
stream.Write(cm, SizeOf(double));
stream.Write(i97, SizeOf(integer));
stream.Write(j97, SizeOf(integer));
end; { TGpRandom.SaveState }
initialization
Randomize;
GGpRandom := TGpRandom.Create;
finalization
FreeAndNil(GGpRandom);
end.