-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontroller.py
597 lines (520 loc) · 28.8 KB
/
controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
import argparse
import os
from yaml import load, dump, FullLoader
import sys
from shutil import copyfile, copytree
from tqdm import tqdm
ROOT = os.path.abspath("..") # get dir of FleckDetect
WORKSPACE = os.path.join(ROOT,"trainedModels/default")
WORKDIR = os.path.join(ROOT, "scripts")
d_config = {}
w_config = {}
sys.path.append(ROOT)
# Todo: Replace by access of packages, only append root
# sys.path.append(os.path.join(ROOT, "scripts/eval"))
# sys.path.append(os.path.join(ROOT, "scripts/eval/plots"))
sys.path.append(os.path.join(ROOT, "scripts/segment"))
# sys.path.append(os.path.join(ROOT, "script/mode"))
def parser():
''' Guess what, it parses the program flags.
Use -h or --help to print the help text.
'''
global d_config
parser_ = argparse.ArgumentParser( \
description='Controller Program to evaluate a trained model.', \
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# TODO: Remove unused arguments
parser_.add_argument("-w", "--workspace", type=str, default=None, help="Choose workspace directory.")
parser_.add_argument('-l', '--list-workspaces', action='store_true',help='Evaluate models')
parser_.add_argument('--prep-train', type=str, default=None ,help='Give name for logs and modelprefix.')
parser_.add_argument("--create-link-file", type=str, default=[], help="<Name of linkfile> <path/to/pred> <path/to/gt>\npaths can be relative, Dataset needs to be placed in Datasets dir!", nargs='+')
parser_.add_argument('-e', '--evaluate', action='store_true',help='Evaluate models and plot train and validation curve')
parser_.add_argument("--sel", type=int, help="Interation of the stored model which will be moved to currentBest dir.", default=-1)
parser_.add_argument("--seg", type=str, default=None, help="Choose set to segment (soc|fleck|msrab).\n You can define your own test set by adding path to the workspace.")
parser_.add_argument('--seg-all', action='store_true',help='Segment all avaliable datasets. Either val or trainset.')
parser_.add_argument("--cal-metrics", type=str, default=None, help='Calculate Metrics for specific image set. The set needs to be defined in the workspace.\n You must need the same argument as with --segment.\n In fact it is expected to run --segment before calculating the metrics!')
parser_.add_argument('--cal-all-metrics', action='store_true',help='Calculate metrics on all avaliable datasets. Either val or trainset.')
parser_.add_argument('-t', '--train-mode', action='store_true',help='When accessing dataset and this flag ist set, the train set will be used, otherwise the validation set.')
parser_.add_argument("--retrain", type=str, default=None, help='Select a dataset on which the model will be trained. The retrain option adapts the trainer and links the current workspace model to it.')
parser_.add_argument('--plot-models', action='store_true',help='Generate one plot (PR and ROC) for all model and segmented dataset that will be found in the workspace. ')
parser_.add_argument('-p', '--plot', type=str, default=None ,help='Generate all plots for the workspace.')
parser_.add_argument('--col-plots', action='store_true',help='Collect all plots.')
parser_.add_argument('--gen-all-plots', action='store_true',help='Generate plots on all avaliable datasets. Either val or trainset.')
parser_.add_argument('--gen-pr-roc-plot', action='store_true',help='Generate combined roc and pr plot')
args = parser_.parse_args()
with open("datasets.yml", "r") as f:
d_config = load(f, Loader=FullLoader)
# print(config)
create_workspace(switch_to=args.workspace)
os.chdir(ROOT)
return args.evaluate, args.sel, args.seg, args.cal_metrics, args.create_link_file, args.plot, args.prep_train, args.train_mode, args.seg_all, args.cal_all_metrics, args.gen_all_plots, args.list_workspaces, args.col_plots, args.gen_pr_roc_plot, args.retrain, args.plot_models
# return config
def create_workspace(switch_to=None):
'''Read workspace from workspace.yml.
The idea is to switch the workspace at any time and resume again there.
Thus the content of workspace.yml will be overwitten with the new workspace and possibly other attribute.
'''
global WORKSPACE
global w_config
with open("workspace.yml", "r") as f:
space = load(f, Loader=FullLoader)
# Be aware that when switching to new workspace the order of dataset and path in workspace.yml may change but is not lost!
if switch_to:
space["w_dir"]["current_space"] = switch_to
with open("workspace.yml", "w") as f:
dump(space, f)
w_config = space
if not os.path.exists(os.path.join(ROOT, w_config["dir"]["w_spaces"])):
os.makedirs(os.path.join(ROOT, w_config["dir"]["w_spaces"]))
names, space_dir = get_workspaces()
if space["w_dir"]["current_space"] not in names + [switch_to]:
print("No Workspace selected. Create a new workspace with:\npython controller.py -w w_space_name.")
print("Existing Workspaces: "+ ", ".join(names) if len(names) > 0 else "")
exit(0)
workspace = os.path.join(ROOT, space["dir"]["w_spaces"], space["w_dir"]["current_space"])
print("Workspace currently set to: {}".format(workspace.split("/")[-1]))
if not os.path.exists(workspace):
print("Create Workspace")
os.makedirs(workspace)
WORKSPACE = workspace
try:
print("Active model: {}".format(load_config()[w_config["w_conf"]["sel_model"]]))
except Exception:
print("Active model not set!")
def get_workspace_prefix():
'''
Return the value of the attribute "model_prefix" in the workspace specific config.yml.
This can be used to access workspace specific models or log files.
Note:
The attribute model_prefix will only be availiable after preparing a training or retraining.
'''
w_config_path = os.path.join(WORKSPACE,w_config["w_dir"]["current_space"]+".yml")
if os.path.exists(w_config_path):
with open(w_config_path, "r") as f:
return load(f, Loader=FullLoader)[w_config["w_conf"]["model_prefix"]]
else:
raise Exception("Prefix config in {} not found!".format(w_config_path))
def get_logfile():
'''Return path to last created log'''
logdir = os.path.join(ROOT, w_config["dir"]["logs"])
if not os.path.exists(logdir):
raise Exception("Could not Find logfiles!\nDid you train a model?")
prefix = get_workspace_prefix()
log_name = prefix + ".out"
return os.path.join(logdir, log_name)
def get_best_model(vis=False):
'''Read the last logfile in model/logs and extract the val and train scores.
Both will be stored as csv in the WORKSPACE.
Subsequent the best train and val model will be printed as well as a plot of both scores to manually decide which model to choose.
'''
logfile = get_logfile()
print(logfile)
if not os.path.exists(logfile):
raise Exception("Could not find logfile: {}".format(logfile))
train_file = os.path.join(WORKSPACE, w_config["files"]["train_out"])
val_file = os.path.join(WORKSPACE, w_config["files"]["val_out"])
parse_log(logfile, train_out=train_file, val_out=val_file)
det_best_model([train_file,val_file], vis=vis)
def copy_model(iteration):
''' When best model is selected, give the iteration of that specific model.
If it exists, the model will be copied in the WORKSPACE.
In the workspace specific config file is the entry sel_model added which is set to the model iteration and allows
the useage of multiple models in one workspace.'''
suf_caff = ".caffemodel"
suf_solv = ".solverstate"
name = get_workspace_prefix()
src_dir = w_config["dir"]["snapshot"]
# Create model names
modelname = "ras_" + name + "_iter_" + str(iteration) + suf_caff
dst_model_path = os.path.join(WORKSPACE, modelname)
# modelstate = "ras_" + name + "_iter_" + str(iteration) + suf_solv
# Check if model exists
model_src_path = os.path.join(src_dir, modelname)
if not (os.path.exists(model_src_path)):
# or os.path.exists(os.path.join(src_dir,modelstate))):
raise Exception("No model found!")
# copy if model does not exist in workspace
if not os.path.exists(dst_model_path):
copyfile(model_src_path, dst_model_path)
# copyfile(model_path, os.path.join(WORKSPACE, modelstate))
store_in_config({w_config["w_conf"]["sel_model"]: str(iteration)})
print("New active model set to:", str(iteration))
def get_workspace_model():
'''Return path to caffemodel according to sel_model in workspace specific config file.
If no model specified return path to model in workspace that is found first.'''
files = os.listdir(WORKSPACE)
try:
sel_model = load_config()[w_config["w_conf"]["sel_model"]]
for name in files:
if ("caffemodel" in name) and (str(sel_model) in name):
return (os.path.join(WORKSPACE, name))
except Exception:
print("No model specified, searching for local model ...")
for name in files:
if ("caffemodel" in name):
print("Found: {}".format(name))
print("New active model set to: {}".format(name[:-11]))
store_in_config({w_config["w_conf"]["sel_model"]: name[:-11]})
return (os.path.join(WORKSPACE, name))
# print("No local model found!")
raise Exception("Cound not find a model!")
def split_path_at(key, path):
'''Cut the part of a path before the key.'''
splitp = path.split("/")
try:
return "/".join([splitp[i] for i in range(splitp.index(key), len(splitp))])
except ValueError:
raise Exception("Could not create relative path to dataset.\nDid you place your images in Datasets/ directory?")
def create_link_file(img_dir, gt_dir, out_path):
''' Duplicated code: calMetrics for merging pred und gt in one file.
One specialty is needed when saving the paths to a file. It needs to be a relative path, seen from Datasets.
This is, every image name must start with Dataset/path/to/image'''
imgs = os.listdir(img_dir)
# print(imgs)
gts = os.listdir(gt_dir)
sample_count = 0
# if len(imgs) == 0:
# raise Exception("Directories does not match!")
pairs = []
img_rel = split_path_at(w_config["dir"]["datasets"], img_dir)
gt_rel = split_path_at(w_config["dir"]["datasets"], gt_dir)
print("Create pairs")
for p in tqdm(imgs):
p_tmp = p.split(".")[0]
for gt in gts:
if p_tmp == gt.split(".")[0]:
pairs.append((os.path.join(img_rel, p), os.path.join(gt_rel, gt)))
break
if len(pairs) == 0:
raise Exception("Check your paths!\nDo both directories contain images with the same names?")
with open(out_path, "w+") as out_file:
print("Write pairs to file:")
for img, gt in tqdm(pairs):
out_file.write("{} {}\n".format(img, gt))
sample_count += 1
print("done!")
return sample_count
def store_in_config(dic_var):
'''Write workspace specific config. For now it is used to store the model prefix'''
config_path = os.path.join(WORKSPACE, w_config["w_dir"]["current_space"]+".yml")
if os.path.exists(config_path):
with open(config_path, "r") as f:
conf = load(f, Loader=FullLoader)
conf.update(dic_var)
with open(config_path, "w") as f:
dump(conf, f)
else:
with open(config_path, "w+") as f:
dump(dic_var, f)
def load_config():
'''Return the workspace specific configuration file as dictionary.'''
config_path = os.path.join(WORKSPACE, w_config["w_dir"]["current_space"]+".yml")
with open(config_path, "r") as f:
return load(f, Loader=FullLoader)
def get_workspaces():
'''Returns all directory names in w_config["dir"]["w_spaces"].'''
space_dir = os.path.join(ROOT, w_config["dir"]["w_spaces"])
w_files = os.listdir(space_dir)
space_names = []
for f in w_files:
if os.path.isdir(os.path.join(space_dir, f)):
space_names.append(f)
return space_names, space_dir
def get_model_workspaces():
'''Retrun all model directories in the specified workspace.
This basically returns all folders except the plot directory.
Note: A Model workspace describes a directory inside the WORKSPACE. Every time a active model
is selected a model workspace will be created to encapsulate the results of different models.
'''
files = os.listdir(WORKSPACE)
names = []
for name in files:
if "plot" in name:
continue
try: # find all dirs that names are numbers only => model directory
# int(name)
names.append(name)
except Exception:
pass
return names
def create_and_deploy_linkfile(rel_img_dir, rel_gt_dir, link_name, deploy_path):
'''Create paths according to given relative paths to the image and gt directory.
Subsequent create linkfile and store it in workspace.
Finally copy created linkfile to deploy_path.
'''
print("Try to link files from {}".format(link_name))
img_dir = os.path.join(ROOT, rel_img_dir)
if not os.path.exists(img_dir):
raise Exception("Img dir: {} was not found!".format(img_dir))
gt_dir = os.path.join(ROOT, rel_gt_dir)
if not os.path.exists(gt_dir):
raise Exception("Gt dir: {} was not found!".format(gt_dir))
link_name_path = os.path.join(WORKSPACE, link_name + ".txt")
sample_count = create_link_file(img_dir, gt_dir, link_name_path)
copyfile(link_name_path, deploy_path)
return sample_count
def gen_linkfiles(prep_train):
'''Generates linkfiles for train and validation set of given dataset.
Both files are copied in the workspace and also copied/deployed in the imagemap directory
Retruns amount of train and validation samples.
'''
if prep_train in d_config["dataset"].keys():
# link dataset files
# train data
train_deploy = os.path.join(ROOT, w_config["path"]["linkfile_train_deploy"])
val_deploy = os.path.join(ROOT, w_config["path"]["linkfile_val_deploy"])
train_sample_count = create_and_deploy_linkfile(d_config["dataset"][prep_train]["train"]["img"],
d_config["dataset"][prep_train]["train"]["gt"],
prep_train+"_train",
train_deploy)
val_sample_count = create_and_deploy_linkfile(d_config["dataset"][prep_train]["val"]["img"],
d_config["dataset"][prep_train]["val"]["gt"],
prep_train+"_val",
val_deploy)
return train_sample_count, val_sample_count
else:
raise Exception("Could not assign data to {}!\Do you have a dataset definition for {} in your gpu.yml?".format(prep_train, prep_train))
def segment_dataset(segment, active_model):
if segment in d_config["dataset"].keys():
# active_model = load_config()[w_config["sel_model"]]
test_img_dir = d_config["dataset"][segment]["train" if train_mode else "val"]["img"] # load image dir
model_path = get_workspace_model()
if model_path:
deploy_path = w_config["path"]["proto_deploy"] # create prototxt path
out_dir = os.path.join( WORKSPACE, active_model, d_config["dataset"][segment]["train" if train_mode else "val"]["out"])
if not os.path.exists(out_dir):
os.makedirs(out_dir)
seg_images(test_img_dir, out_dir, deploy_path, model_path, link_file=w_config["files"]["data"])
else:
raise Exception("Flag {} does not link to a Dataset.\n Is it defined in gpu.yml?".format(segment))
def calculate_metrics(metrics, active_model):
# active_model = load_config()[w_config["sel_model"]]
pred_dir = os.path.join(WORKSPACE, active_model, d_config["dataset"][metrics]["train" if train_mode else "val"]["out"])
gt_dir = os.path.join(ROOT, d_config["dataset"][metrics]["train" if train_mode else "val"]["gt"])
if (not os.path.exists(pred_dir)) :
raise Exception("Could not find prediction data.\nDid you run a segmentation?")
if (not os.path.exists(gt_dir)):
raise Exception(
"Could not find groud truth data.\nDid you add the correct path to the gpu.yml?")
metric_path = os.path.join(WORKSPACE, active_model, d_config["dataset"][metrics]["train" if train_mode else "val"]["out"],
w_config["files"]["metric"])
exe_dir = os.path.join(ROOT, w_config["dir"]["metric_build"])
if (not os.path.exists(exe_dir)):
raise Exception("Could not find Metrics build dir.\nDid you build it correctly?")
os.chdir(exe_dir) # switch dir to the executabel
cal_metrics(pred_dir, gt_dir, metric_path)
os.chdir(ROOT)
def save_incremental_plot(axs, out_path):
'''Create legend for gven axes and save the plot.
Paramerters:
axs - list of two matplotlib axes
out_path - path/name of the output plot
'''
box = axs[0].get_position()
axs[0].set_position([box.x0, box.y0, box.width * 0.8, box.height])
axs[0].legend(loc='center left', bbox_to_anchor=(1, 0.5))
box = axs[1].get_position()
axs[1].set_position([box.x0, box.y0, box.width * 0.8, box.height])
axs[1].legend(loc='center left', bbox_to_anchor=(1, 0.5))
plt.savefig(out_path)
plt.close()
if __name__ == "__main__":
eva, select, segment, metrics, link_files, gen_plots, prep_train, train_mode, seg_all, cal_all_metrics, gen_all_plots, list_workspaces, col_plots, gen_pr_roc_plot, retrain, plot_models = parser()
# Ensure that the filesystem is prepared and no dir is missing:
if not os.path.exists(os.path.join(ROOT, w_config["dir"]["snapshot"])):
os.makedirs(os.path.join(ROOT, w_config["dir"]["snapshot"]))
if not os.path.exists(os.path.join(ROOT, w_config["dir"]["logs"])):
os.makedirs(os.path.join(ROOT, w_config["dir"]["logs"]))
if eva:
from scripts.eval.parse_caffe_log import parse_log
from scripts.eval.evaluate_loss import det_best_model
get_best_model(vis=True)
if select > 0:
copy_model(select)
try:
get_workspace_model()
active_model = load_config()[w_config["w_conf"]["sel_model"]]
except Exception:
print("Selecting a model after training with --sel <iteration> or copy it in the workspace.")
if segment:
# from scripts.segment.segment_images import seg_images
from segment_images import seg_images
segment_dataset(segment, active_model)
if metrics:
from scripts.eval.calMetrics import cal_metrics
if metrics in d_config["dataset"].keys():
calculate_metrics(metrics, active_model)
else:
raise Exception("Flag {} does not link to a path.\nIs it defined in workspace.yml?".format(metrics))
# print(config)
if len(link_files) == 3:
link_name = link_files[0]
link_name_path = os.path.join(WORKSPACE, link_name)
img_rel_dir = link_files[1]
img_dir = os.path.join(ROOT, split_path_at(w_config["dir"]["datasets"], img_rel_dir))
if not os.path.exists(img_dir):
raise Exception("Img dir: {} was not found!".format(img_dir))
gt_rel_dir = link_files[2]
gt_dir = os.path.join(ROOT, split_path_at(w_config["dir"]["datasets"], gt_rel_dir))
if not os.path.exists(gt_dir):
raise Exception("Gt dir: {} was not found!".format(gt_dir))
create_link_file(img_dir, gt_dir, link_name_path)
elif (len(link_files) == 1) and (link_files[0] in d_config["dataset"].keys()):
print("Try to link files from {}".format(link_files[0]))
img_dir = os.path.join(ROOT, d_config["dataset"][link_files[0]]["train" if train_mode else "val"]["img"])
if not os.path.exists(img_dir):
raise Exception("Img dir: {} was not found!".format(img_dir))
gt_dir = os.path.join(ROOT, d_config["dataset"][link_files[0]]["train" if train_mode else "val"]["gt"])
if not os.path.exists(gt_dir):
raise Exception("Gt dir: {} was not found!".format(gt_dir))
link_name_path = os.path.join(WORKSPACE, link_files[0]+".txt")
create_link_file(img_dir, gt_dir, link_name_path)
# else:
# raise Exception("Invalid count of arguments: {}".format(len(link_files)))
if gen_plots:
from scripts.eval.plots.plot_metrics import create_plots
if gen_plots in d_config["dataset"].keys():
metric_path = os.path.join(WORKSPACE, d_config["dataset"][gen_plots]["train" if train_mode else "val"]["out"] , w_config["files"]["metric"])
if not os.path.exists(metric_path):
raise Exception("Could not find metric path!\nDid you run --cal-metrics before?")
plot_dir = os.path.join(WORKSPACE, d_config["dataset"][gen_plots]["train" if train_mode else "val"]["out"], w_config["plotdir"])
if not os.path.exists(plot_dir):
os.makedirs(plot_dir)
create_plots(metric_path, plot_dir)
else:
raise Exception("Flag {} does not link to a path.\nIs it defined in workspace.yml?".format(gen_plots))
if prep_train:
from scripts.model.edit_training import rename_train_cond, set_net_proto_paths, set_model_config
train_samples, val_samples = gen_linkfiles(prep_train)
model_config_path = os.path.join(ROOT, w_config["path"]["m_config"])
set_model_config(model_config_path,
solver_path=os.path.join(ROOT, w_config["path"]["proto_solver"]),
test_iter=val_samples,
retrain=False, weight_path=os.path.join(ROOT, w_config["path"]["base_weights"]))
out_dir = os.path.join(ROOT, w_config["dir"]["model"])
rename_train_cond(out_dir, prep_train)
set_net_proto_paths(ROOT, os.path.join(ROOT, w_config["path"]["linkfile_train_deploy"]), w_config["path"]["proto_train"])
set_net_proto_paths(ROOT, os.path.join(ROOT, w_config["path"]["linkfile_val_deploy"]), w_config["path"]["proto_val"])
store_in_config({w_config["w_conf"]["model_prefix"]: prep_train})
if seg_all:
from scripts.segment.segment_images import seg_images
for segment in d_config["dataset"].keys():
segment_dataset(segment, active_model)
if cal_all_metrics:
from scripts.eval.calMetrics import cal_metrics
for metrics in d_config["dataset"].keys():
calculate_metrics(metrics, active_model)
# print(config)
if list_workspaces:
names, space_dir = get_workspaces()
print("Existing Workspaces: {}".format(", ".join(names)))
if retrain:
from scripts.model.edit_training import set_net_proto_paths, rename_train_cond, set_model_config
if retrain in d_config["dataset"].keys():
model_path = get_workspace_model() # get abs model path
# load config and adapt model path
# config_path = os.path.join(ROOT, w_config["path"]["m_config"])
#TODO Adapt learn rate in trainer
workspace_name = w_config["w_dir"]["current_space"] + "_on_" + retrain
# create new workspace
os.chdir(os.path.join(ROOT, w_config["dir"]["scripts"])) # Change dir to find workspace config
create_workspace(switch_to=workspace_name)
os.chdir(ROOT)
store_in_config({w_config["w_conf"]["model_prefix"]: workspace_name})
# create linkfiles
train_samples, val_samples = gen_linkfiles(retrain)
# Set the path to linkfiles in prototxt files
set_net_proto_paths(ROOT, os.path.join(ROOT, w_config["path"]["linkfile_train_deploy"]), w_config["path"]["proto_train"])
set_net_proto_paths(ROOT, os.path.join(ROOT, w_config["path"]["linkfile_val_deploy"]), w_config["path"]["proto_val"])
# Store workspace_name in workspace config file
out_dir = os.path.join(ROOT, w_config["dir"]["model"])
model_config_path = os.path.join(ROOT, w_config["path"]["m_config"])
set_model_config(model_config_path,
solver_path=os.path.join(ROOT, w_config["path"]["proto_solver"]),
test_iter=val_samples,
retrain=True, weight_path=model_path)
rename_train_cond(out_dir, workspace_name)
# if not os.path.exists(config_path):
# raise Exception("Config file does not exist!")
# # Write changes to model config
# with open(config_path, "r") as f:
# m_conf = load(f, Loader=FullLoader)
# m_conf["weights"]["retrain"] = model_path
# m_conf["retrain"] = True
# with open(config_path, "w") as f:
# dump(m_conf, f)
#
else:
raise Exception("Dataset: {} not found!".format(retrain))
if plot_models:
import matplotlib.pyplot as plt
from scripts.eval.plots.plot_metrics import create_incremental_plot
files = os.listdir(WORKSPACE)
model_dir_names = get_model_workspaces()
print(model_dir_names)
dataset_type = "train" if train_mode else "val"
plot_dst_dir = os.path.join(WORKSPACE, w_config["plotdir"])
if not os.path.exists(plot_dst_dir):
os.makedirs(plot_dst_dir)
for d_set in d_config["dataset"].keys():
fig, axs = plt.subplots(2,1, figsize=(15,15))
for model_name in model_dir_names:
metric_path = os.path.join(WORKSPACE, model_name, d_config["dataset"][d_set]["train" if train_mode else "val"]["out"] , w_config["files"]["metric"])
if not os.path.exists(metric_path):
continue
create_incremental_plot(metric_path, axs, model_name)
out_path = os.path.join(plot_dst_dir, "_".join([d_set, dataset_type])+".pdf")
save_incremental_plot(axs, out_path)
if gen_pr_roc_plot:
raise NotImplementedError()
# import matplotlib.pyplot as plt
# from scripts.eval.plots.plot_metrics import create_incremental_plot
# names, space_dir = get_workspaces()
# print(names)
# dataset_type = "train" if train_mode else "val"
# plot_dst_dir = os.path.join(ROOT, config["out_plots"])
# print(plot_dst_dir)
# if not os.path.exists(plot_dst_dir):
# os.makedirs(plot_dst_dir)
# for gen_plots in d_config["dataset"].keys():
# fig, axs = plt.subplots(2,1, figsize=(15,15))
# for work_name in names:
# print(gen_plots)
# work_dir = os.path.join(space_dir, work_name)
# plot_dir = os.path.join(work_dir, d_config["dataset"][gen_plots][dataset_type]["out"], w_config["plotdir"])
# metric_path = os.path.join(work_dir, d_config["dataset"][gen_plots]["train" if train_mode else "val"]["out"] , w_config["files"]["metric"])
# if not os.path.exists(metric_path):
# raise Exception("Could not find metric path!\nDid you run --cal-metrics before?")
# if not os.path.exists(plot_dir):
# os.makedirs(plot_dir)
# create_incremental_plot(metric_path, axs, work_name)
# out_path = os.path.join(ROOT, config["out_plots"], "_".join([gen_plots, dataset_type])+".pdf")
# save_incremental_plot(axs, out_path)
if col_plots:
raise NotImplementedError()
# names, space_dir = get_workspaces()
# print(names)
# dataset_type = "train" if train_mode else "val"
# plot_dst_dir = os.path.join(ROOT, w_config["w_dir"]["out_plots"])
# print(plot_dst_dir)
# if not os.path.exists(plot_dst_dir):
# os.makedirs(plot_dst_dir)
# for work_name in names:
# work_dir = os.path.join(space_dir, work_name)
# plot_dir = os.path.join(work_dir, w_config["w_dir"]["plot"])
# if os.path.exists(plot_dir) and os.path.isdir(plot_dir):
# dst_path = os.path.join(plot_dst_dir, work_name)
# copytree(plot_dir, dst_path)
# else:
# print("No plots found in workspace: {}".format(work_name))
if gen_all_plots:
raise NotImplementedError()
# from scripts.eval.plots.plot_metrics import create_plots
# for gen_plots in d_config["dataset"].keys():
# metric_path = os.path.join(WORKSPACE, d_config["dataset"][gen_plots]["train" if train_mode else "val"]["out"] , w_config["files"]["metric"])
# if not os.path.exists(metric_path):
# raise Exception("Could not find metric path!\nDid you run --cal-metrics before?")
# plot_dir = os.path.join(WORKSPACE, d_config["dataset"][gen_plots]["train" if train_mode else "val"]["out"], w_config["plotdir"])
# if not os.path.exists(plot_dir):
# os.makedirs(plot_dir)
# create_plots(metric_path, plot_dir)