-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path3d-bridson-algorithm.py
107 lines (99 loc) · 4.18 KB
/
3d-bridson-algorithm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import random
import math
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
def calculate_squared_distance(point1, point2):
dx = point1[0] - point2[0]
dy = point1[1] - point2[1]
dz = point1[2] - point2[2]
return dx * dx + dy * dy + dz * dz
def generate_random_points_around(center_point, radius, num_points=1):
new_points = []
for _ in range(num_points):
r = random.uniform(radius, 2 * radius)
theta = random.uniform(0, 2 * math.pi)
phi = random.uniform(0, math.pi)
x = center_point[0] + r * math.sin(phi) * math.cos(theta)
y = center_point[1] + r * math.sin(phi) * math.sin(theta)
z = center_point[2] + r * math.cos(phi)
new_points.append((x, y, z))
return new_points
def is_point_within_limits(point, width, height, depth):
if 0 <= point[0] < width and 0 <= point[1] < height and 0 <= point[2] < depth:
return True
else:
return False
def get_neighborhood_indices(grid_size, index, n=2):
row, col, depth = index
row_start = max(row - n, 0)
row_end = min(row + n + 1, grid_size[0])
col_start = max(col - n, 0)
col_end = min(col + n + 1, grid_size[1])
depth_start = max(depth - n, 0)
depth_end = min(depth + n + 1, grid_size[2])
indices = []
for r in range(row_start, row_end):
for c in range(col_start, col_end):
for d in range(depth_start, depth_end):
if (r, c, d) != (row, col, depth):
indices.append((r, c, d))
return indices
def is_point_in_neighborhood(point, points_grid, neighborhood_indices, cell_size, squared_radius):
i = int(point[0] / cell_size)
j = int(point[1] / cell_size)
k = int(point[2] / cell_size)
if points_grid[i][j][k] != (0, 0, 0):
return True
for (r, c, d) in neighborhood_indices[(i, j, k)]:
if points_grid[r][c][d] != (0, 0, 0) and calculate_squared_distance(point, points_grid[r][c][d]) < squared_radius:
return True
return False
def add_point_to_grid(point, points_list, points_grid, cell_size):
points_list.append(point)
i = int(point[0] / cell_size)
j = int(point[1] / cell_size)
k = int(point[2] / cell_size)
points_grid[i][j][k] = point
def generate_bridson_sampling_points(width=1.0, height=1.0, depth=1.0, radius=0.075, num_neighbors=30):
cell_size = radius / math.sqrt(3)
num_rows = int(math.ceil(width / cell_size))
num_cols = int(math.ceil(height / cell_size))
num_depths = int(math.ceil(depth / cell_size))
squared_radius = radius * radius
points_grid = []
for _ in range(num_rows):
row = [[(0, 0, 0)] * num_depths for _ in range(num_cols)]
points_grid.append(row)
neighborhood_indices = {}
for i in range(num_rows):
for j in range(num_cols):
for k in range(num_depths):
neighborhood_indices[(i, j, k)] = get_neighborhood_indices((num_rows, num_cols, num_depths), (i, j, k), 2)
points_list = []
initial_point = (random.uniform(0, width), random.uniform(0, height), random.uniform(0, depth))
add_point_to_grid(initial_point, points_list, points_grid, cell_size)
while points_list:
random_index = random.randint(0, len(points_list) - 1)
current_point = points_list[random_index]
del points_list[random_index]
new_points = generate_random_points_around(current_point, radius, num_neighbors)
for new_point in new_points:
if is_point_within_limits(new_point, width, height, depth) and not is_point_in_neighborhood(new_point, points_grid, neighborhood_indices, cell_size, squared_radius):
add_point_to_grid(new_point, points_list, points_grid, cell_size)
sampled_points = []
for row in points_grid:
for col in row:
for point in col:
if point != (0, 0, 0):
sampled_points.append(point)
return sampled_points
if __name__ == '__main__':
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
sampled_points = generate_bridson_sampling_points()
X, Y, Z = zip(*sampled_points)
ax.scatter(X, Y, Z, s=10)
ax.set_xlim(0, 1)
ax.set_ylim(0, 1)
ax.set_zlim(0, 1)
plt.show()