-
Notifications
You must be signed in to change notification settings - Fork 4
/
textureSynthesis.m
executable file
·436 lines (386 loc) · 13.1 KB
/
textureSynthesis.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
function [im,snrP,imS] = textureSynthesis(params, im0, Niter, cmask, imask)
% [res,snrP,imS] = textureSynthesis(params, initialIm, Niter, cmask, imask)
%
% Synthesize texture applying Portilla-Simoncelli model/algorithm.
%
% params: structure containing texture parameters (as returned by textureAnalysis).
%
% im0: initial image, OR a vector (Ydim, Xdim, [SEED]) containing
% dimensions of desired image and an optional seed for the random
% number generator. If dimensions are passed, initial image is
% Gaussian white noise.
%
% Niter (optional): Number of iterations. Default = 50.
%
% cmask (optional): binary column vector (4x1) indicating which sets of
% constraints we want to apply in the synthesis. The four sets are:
% 1) Marginal statistics (mean, var, skew, kurt, range)
% 2) Correlation of subbands (space, orientation, scale)
% 3) Correlation of magnitude responses (sp, or, sc)
% 4) Relative local phase
%
% imask (optional): imsizex2 matrix. First column is a mask, second
% column contains the image values to be imposed. If only one column is
% provided, it assumes it corresponds to the image values, and it uses
% a raised cosine square for the mask.
% snrP (optional): Set of adjustment values (in dB) of the parameters.
% imS (optional): Sequence of synthetic images, from niter = 1 to 2^n, being
% n = floor(log2(Niter)).
% Javier Portilla and Eero Simoncelli.
% Work described in:
% "A Parametric Texture Model based on Joint Statistics of Complex Wavelet Coefficients".
% J Portilla and E P Simoncelli. Int'l Journal of Computer Vision,
% vol.40(1), pp. 49-71, Dec 2000.
%
% Please refer to this publication if you use the program for research or
% for technical applications. Thank you.
%
% Copyright, Center for Neural Science, New York University, January 2001.
% All rights reserved.
Warn = 0; % Set to 1 if you want to see warning messages
%% Check required args are passed:
if (nargin < 2)
error('Function called with too few input arguments');
end
if ( ~exist('Niter') | isempty(Niter) )
Niter = 50;
end
if (exist('cmask') & ~isempty(cmask) )
cmask = (cmask > 0.5); % indices of ones in mask
else
cmask = ones(4,1);
end
%% Extract parameters
statg0 = params.pixelStats;
mean0 = statg0(1); var0 = statg0(2);
skew0 = statg0(3); kurt0 = statg0(4);
mn0 = statg0(5); mx0 = statg0(6);
statsLPim = params.pixelLPStats;
skew0p = statsLPim(:,1);
kurt0p = statsLPim(:,2);
vHPR0 = params.varianceHPR;
acr0 = params.autoCorrReal;
ace0 = params.autoCorrMag;
magMeans0 = params.magMeans;
C0 = params.cousinMagCorr;
Cx0 = params.parentMagCorr;
Crx0 = params.parentRealCorr;
%% Extract {Nsc, Nor, Na} from params
tmp = size(params.autoCorrMag);
Na = tmp(1); Nsc = tmp(3);
Nor = tmp(length(tmp))*(length(tmp)==4) + (length(tmp)<4);
la = (Na-1)/2;
%% If im0 is a vector of length 2, create Gaussian white noise image of this
%% size, with desired pixel mean and variance. If vector length is
%% 3, use the 3rd element to seed the random number generator.
if ( length(im0) <= 3 )
if ( length(im0) == 3)
randn('state', im0(3)); % Reset Seed
im0 = im0(1:2);
end
im = mean0 + sqrt(var0)*randn(im0);
else
im = im0;
end
%% If the spatial neighborhood Na is too big for the lower scales,
%% "modacor22.m" will make it as big as the spatial support at
%% each scale:
[Ny,Nx] = size(im);
nth = log2(min(Ny,Nx)/Na);
if nth<Nsc+1 & Warn,
fprintf(1,'Warning: Na will be cut off for levels above #%d !\n',floor(nth));
end
if exist('imask') & ~isempty(imask),
if size(imask,1) ~= prod(size(im))
error(sprintf('imask size %d does not match image dimensions [%d,%d]',...
size(imask,1), size(im,1), size(im,2)));
end
if size(imask,2) == 1,
mask = (cos(-pi/2:2*pi/Ny:pi*(1-2/Ny)/2)).'*cos(-pi/2:2*pi/Nx:pi*(1-2/Nx)/2);
mask = mask.^2;
aux = zeros(size(im));
aux(Ny/4+1:Ny/4+Ny/2,Nx/4+1:Nx/4+Nx/2)=mask;
mask = aux;
else
mask = reshape(imask(:,1),size(im));
end
end
imf = max(1,gcf-1); snrf = imf+1;
figure(imf); clf
subplot(1,2,1); grayRange = showIm(im,'auto',1); title('Starting image');
drawnow
prev_im=im;
imf = max(1,gcf-1);
figure(imf);
clf;showIm(im,'auto',1); title(sprintf('iteration 0'));
nq = 0;
Nq = floor(log2(Niter));
imS = zeros(Ny,Nx,Nq);
%% MAIN LOOP
for niter = 1:Niter
%p = niter/Niter;
p = 1;
%% Build the steerable pyramid
[pyr,pind] = buildSCFpyr(im,Nsc,Nor-1);
if ( any(vector(mod(pind,4))) )
error('Algorithm will fail: band dimensions are not all multiples of 4!');
end
%% Subtract mean of lowBand:
nband = size(pind,1);
pyr(pyrBandIndices(pind,nband)) = ...
pyrBand(pyr,pind,nband) - mean2(pyrBand(pyr,pind,nband));
apyr = abs(pyr);
%% Adjust autoCorr of lowBand
nband = size(pind,1);
ch = pyrBand(pyr,pind,nband);
Sch = min(size(ch)/2);
nz = sum(sum(~isnan(acr0(:,:,Nsc+1))));
lz = (sqrt(nz)-1)/2;
le = min(Sch/2-1,lz);
im = real(ch); %Reconstructed image: initialize to lowband
[mpyr,mpind] = buildSFpyr(im,0,0);
im = pyrBand(mpyr,mpind,2);
vari = acr0(la+1:la+1,la+1:la+1,Nsc+1);
if cmask(2),
if vari/var0 > 1e-4,
[im, snr2(niter,Nsc+1)] = ...
modacor22(im, acr0(la-le+1:la+le+1,la-le+1:la+le+1,Nsc+1),p);
else
im = im*sqrt(vari/var2(im));
end
if (var2(imag(ch))/var2(real(ch)) > 1e-6)
fprintf(1,'Discarding non-trivial imaginary part, lowPass autoCorr!');
end
im = real(im);
end % cmask(2)
if cmask(1),
if vari/var0 > 1e-4,
[im,snr7(niter,2*(Nsc+1)-1)] = modskew(im,skew0p(Nsc+1),p); % Adjusts skewness
[im,snr7(niter,2*(Nsc+1))] = modkurt(im,kurt0p(Nsc+1),p); % Adjusts kurtosis
end
end % cmask(2)
%% Subtract mean of magnitude
if cmask(3),
magMeans = zeros(size(pind,1), 1);
for nband = 1:size(pind,1)
indices = pyrBandIndices(pind,nband);
magMeans(nband) = mean2(apyr(indices));
apyr(indices) = apyr(indices) - magMeans(nband);
end
end % cmask(3)
%% Coarse-to-fine loop:
for nsc = Nsc:-1:1
firstBnum = (nsc-1)*Nor+2;
cousinSz = prod(pind(firstBnum,:));
ind = pyrBandIndices(pind,firstBnum);
cousinInd = ind(1) + [0:Nor*cousinSz-1];
%% Interpolate parents
if (cmask(3) | cmask(4)),
if (nsc<Nsc)
parents = zeros(cousinSz,Nor);
rparents = zeros(cousinSz,Nor*2);
for nor = 1:Nor
nband = (nsc+1-1)*Nor+nor+1;
tmp = expand(pyrBand(pyr, pind, nband),2)/4;
rtmp = real(tmp); itmp = imag(tmp);
tmp = sqrt(rtmp.^2 + itmp.^2) .* exp(2 * sqrt(-1) * atan2(rtmp,itmp));
rparents(:,nor) = vector(real(tmp));
rparents(:,Nor+nor) = vector(imag(tmp));
tmp = abs(tmp);
parents(:,nor) = vector(tmp - mean2(tmp));
end
else
rparents = [];
parents = [];
end
end % if (cmask(3) | cmask(4))
if cmask(3),
%% Adjust cross-correlation with MAGNITUDES at other orientations/scales:
cousins = reshape(apyr(cousinInd), [cousinSz Nor]);
nc = size(cousins,2); np = size(parents,2);
if (np == 0)
[cousins, snr3(niter,nsc)] = adjustCorr1s(cousins, C0(1:nc,1:nc,nsc), 2, p);
else
[cousins, snr3(niter,nsc), snr4(niter,nsc)] = ...
adjustCorr2s(cousins, C0(1:nc,1:nc,nsc), parents, Cx0(1:nc,1:np,nsc), 3, p);
end
if (var2(imag(cousins))/var2(real(cousins)) > 1e-6)
fprintf(1,'Non-trivial imaginary part, mag crossCorr, lev=%d!\n',nsc);
else
cousins = real(cousins);
ind = cousinInd;
apyr(ind) = vector(cousins);
end
%% Adjust autoCorr of mag responses
nband = (nsc-1)*Nor+2;
Sch = min(pind(nband,:)/2);
nz = sum(sum(~isnan(ace0(:,:,nsc,1))));
lz = (sqrt(nz)-1)/2;
le = min(Sch/2-1,lz);
for nor = 1:Nor,
nband = (nsc-1)*Nor+nor+1;
ch = pyrBand(apyr,pind,nband);
[ch, snr1(niter,nband-1)] = modacor22(ch,...
ace0(la-le+1:la+le+1,la-le+1:la+le+1,nsc,nor), p);
ch = real(ch);
ind = pyrBandIndices(pind,nband);
apyr(ind) = ch;
%% Impose magnitude:
mag = apyr(ind) + magMeans0(nband);
mag = mag .* (mag>0);
pyr(ind) = pyr(ind) .* (mag./(abs(pyr(ind))+(abs(pyr(ind))<eps)));
end
end % cmask(3)
%% Adjust cross-correlation of REAL PARTS at other orientations/scales:
cousins = reshape(real(pyr(cousinInd)), [cousinSz Nor]);
Nrc = size(cousins,2); Nrp = size(rparents,2);
if cmask(4) & (Nrp ~= 0)
a3 = 0; a4 = 0;
for nrc = 1:Nrc,
cou = cousins(:,nrc);
[cou, s3, s4] = ...
adjustCorr2s(cou,mean(cou.^2),rparents,Crx0(nrc,1:Nrp,nsc), 3);
a3 = s3 + a3;
a4 = s4 + a4;
cousins(:,nrc) = cou;
end
snr4r(niter,nsc) = a4/Nrc;
end
if (var2(imag(cousins))/var2(real(cousins)) > 1e-6)
fprintf(1,'Non-trivial imaginary part, real crossCorr, lev=%d!\n',nsc);
else
%%% NOTE: THIS SETS REAL PART ONLY - signal is now NONANALYTIC!
pyr(cousinInd) = vector(cousins(1:Nor*cousinSz));
end
%% Re-create analytic subbands
dims = pind(firstBnum,:);
ctr = ceil((dims+0.5)/2);
ang = mkAngle(dims, 0, ctr);
ang(ctr(1),ctr(2)) = -pi/2;
for nor = 1:Nor,
nband = (nsc-1)*Nor+nor+1;
ind = pyrBandIndices(pind,nband);
ch = pyrBand(pyr, pind, nband);
ang0 = pi*(nor-1)/Nor;
xang = mod(ang-ang0+pi, 2*pi) - pi;
amask = 2*(abs(xang) < pi/2) + (abs(xang) == pi/2);
amask(ctr(1),ctr(2)) = 1;
amask(:,1) = 1;
amask(1,:) = 1;
amask = fftshift(amask);
ch = ifft2(amask.*fft2(ch)); % "Analytic" version
pyr(ind) = ch;
end
%% Combine ori bands
bandNums = [1:Nor] + (nsc-1)*Nor+1; %ori bands only
ind1 = pyrBandIndices(pind, bandNums(1));
indN = pyrBandIndices(pind, bandNums(Nor));
bandInds = [ind1(1):indN(length(indN))];
%% Make fake pyramid, containing dummy hi, ori, lo
fakePind = pind([bandNums(1), bandNums, bandNums(Nor)+1],:);
fakePyr = [zeros(prod(fakePind(1,:)),1);...
real(pyr(bandInds)); zeros(prod(fakePind(size(fakePind,1),:)),1)];
ch = reconSFpyr(fakePyr, fakePind, [1]); % recon ori bands only
im = real(expand(im,2))/4;
im = im + ch;
vari = acr0(la+1:la+1,la+1:la+1,nsc);
if cmask(2),
if vari/var0 > 1e-4,
[im, snr2(niter,nsc)] = ...
modacor22(im, acr0(la-le+1:la+le+1,la-le+1:la+le+1,nsc), p);
else
im = im*sqrt(vari/var2(im));
end
end % cmask(2)
im = real(im);
if cmask(1),
%% Fix marginal stats
if vari/var0 > 1e-4,
[im,snr7(niter,2*nsc-1)] = modskew(im,skew0p(nsc),p); % Adjusts skewness
[im,snr7(niter,2*nsc)] = modkurt(im,kurt0p(nsc),p); % Adjusts kurtosis
end
end % cmask(1)
end %END Coarse-to-fine loop
%% Adjust variance in HP, if higher than desired
if (cmask(2)|cmask(3)|cmask(4)),
ind = pyrBandIndices(pind,1);
ch = pyr(ind);
vHPR = mean2(ch.^2);
if vHPR > vHPR0,
ch = ch * sqrt(vHPR0/vHPR);
pyr(ind) = ch;
end
end % cmask
im = im + reconSFpyr(real(pyr), pind, [0]); %recon hi only
%% Pixel statistics
means = mean2(im);
vars = var2(im, means);
snr7(niter,2*(Nsc+1)+1) = snr(var0,var0-vars);
im = im-means; % Adjusts mean and variance
[mns mxs] = range2(im + mean0);
snr7(niter,2*(Nsc+1)+2) = snr(mx0-mn0,sqrt((mx0-mxs)^2+(mn0-mns)^2));
if cmask(1),
im = im*sqrt(((1-p)*vars + p*var0)/vars);
end % cmaks(1)
im = im+mean0;
if cmask(1),
[im, snr7(niter,2*(Nsc+1)+3)] = modskew(im,skew0,p); % Adjusts skewness (keep mean and variance)
[im, snr7(niter,2*(Nsc+1)+4)] = modkurt(im,kurt0,p); % Adjusts kurtosis (keep mean and variance,
% but not skewness)
im = max(min(im,(1-p)*max(max(im))+p*mx0),...
(1-p)*min(min(im))+p*mn0); % Adjusts range (affects everything)
else
snr7(niter,2*(Nsc+1)+3) = snr(skew0,skew0-skew2(im));
snr7(niter,2*(Nsc+1)+4) = snr(kurt0,kurt0-kurt2(im));
end % cmask(1)
%% Force pixels specified by image mask
if (exist('imask') & ~isempty(imask) )
im = mask.*reshape(imask(:,2 - (size(imask,2)==1)),size(im)) + ...
(1-mask).*im;
end
snr6(niter,1) = snr(im-mean0,im-prev_im);
if floor(log2(niter))==log2(niter),
nq = nq + 1;
imS(:,:,nq) = im;
end
tmp = prev_im;
prev_im=im;
figure(imf);
subplot(1,2,1);
showIm(im-tmp,'auto',1); title('Change');
subplot(1,2,2);
showIm(im,'auto',1); title(sprintf('iteration %d/%d',niter,Niter));
drawnow
% accelerator
alpha = 0.8;
im = im + alpha*(im - tmp);
commented = 1; % set it to 0 for displaying convergence of parameters in SNR (dB)
if ~commented,
% The graphs that appear reflect
% the relative distance of each parameter or group
% of parametersi, to the original's, in decibels.
% Note, however, that when the original parameters
% are close to zero, this measurement is meaningless.
% This is why in some cases it seems that some of
% the parameters do not converge at all.
figure(snrf);
if cmask(1)
subplot(171); plot(snr7); title('Mrgl stats');
end
if cmask(2),
subplot(172); plot(snr2); title('Raw auto');
end
if cmask(3),
subplot(173); plot(snr1); title('Mag auto');
subplot(174); plot(snr3); title('Mag ori');
subplot(175); plot(snr4); title('Mag scale');
end
if (Nrp > 0) & cmask(4),
subplot(176); plot(snr4r); title('Phs scale');
end
subplot(177); plot(snr6); title('Im change');
drawnow
end % if ~commented
end %END MAIN LOOP
im = prev_im;
snrP = [snr7 snr2 snr1 snr3 snr4 snr4r snr6];