-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtranmerc_inv.m
161 lines (152 loc) · 5.12 KB
/
tranmerc_inv.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
function [lat, lon, gam, k] = tranmerc_inv(lat0, lon0, x, y, ellipsoid)
%TRANMERC_INV Inverse transverse Mercator projection
%
% [lat, lon] = TRANMERC_INV(lat0, lon0, x, y)
% [lat, lon, gam, k] = TRANMERC_INV(lat0, lon0, x, y, ellipsoid)
%
% performs the inverse transverse Mercator projection of points (x,y) to
% (lat,lon) using (lat0,lon0) as the center of projection. These input
% arguments can be scalars or arrays of equal size. The ellipsoid vector
% is of the form [a, e], where a is the equatorial radius in meters, e is
% the eccentricity. If ellipsoid is omitted, the WGS84 ellipsoid (more
% precisely, the value returned by defaultellipsoid) is used. The common
% case of lat0 = 0 is treated efficiently provided that lat0 is specified
% as a scalar. projdoc defines the projection and gives the restrictions
% on the allowed ranges of the arguments. The forward projection is
% given by tranmerc_fwd. The scale on the central meridian is 1.
%
% gam and K give metric properties of the projection at (lat,lon); gam is
% the meridian convergence at the point and k is the scale.
%
% lat0, lon0, lat, lon, gam are in degrees. The projected coordinates x,
% y are in meters (more precisely the units used for the equatorial
% radius). k is dimensionless.
%
% This implementation of the projection is based on the series method
% described in
%
% C. F. F. Karney, Transverse Mercator with an accuracy of a few
% nanometers, J. Geodesy 85(8), 475-485 (Aug. 2011);
% Addenda: https://geographiclib.sourceforge.io/tm-addenda.html
%
% This extends the series given by Krueger (1912) to sixth order in the
% flattening. This is a substantially better series than that used by
% the MATLAB mapping toolbox. In particular the errors in the projection
% are less than 5 nanometers within 3900 km of the central meridian (and
% less than 1 mm within 7600 km of the central meridian). The mapping
% can be continued accurately over the poles to the opposite meridian.
%
% See also PROJDOC, TRANMERC_FWD, UTMUPS_FWD, UTMUPS_INV,
% DEFAULTELLIPSOID, FLAT2ECC.
% Copyright (c) Charles Karney (2012-2022) <karney@alum.mit.edu>.
narginchk(4, 5)
if nargin < 5, ellipsoid = defaultellipsoid; end
try
S = size(lat0 + lon0 + x + y); %#ok<SZARLOG>
catch
error('lat0, lon0, x, y have incompatible sizes')
end
if length(ellipsoid(:)) ~= 2
error('ellipsoid must be a vector of size 2')
end
Z = -zeros(prod(S),1);
maxpow = 6;
a = ellipsoid(1);
e2 = real(ellipsoid(2)^2);
f = e2 / (1 + sqrt(1 - e2));
e2m = 1 - e2;
cc = sqrt(e2m) * exp(eatanhe(1, e2));
n = f / (2 -f);
bet = betf(n);
b1 = (1 - f) * (A1m1f(n) + 1);
a1 = b1 * a;
if isscalar(lat0) && lat0 == 0
y0 = 0;
else
[sbet0, cbet0] = sincosdx(LatFix(lat0(:)));
[sbet0, cbet0] = norm2((1-f) * sbet0, cbet0);
y0 = a1 * (atan2(sbet0, cbet0) + ...
SinCosSeries(true, sbet0, cbet0, C1f(n)));
end
y = y(:) + y0 + Z;
xi = y / a1;
eta = x(:) / a1 + Z;
xisign = copysignx(1, xi);
etasign = copysignx(1, eta);
xi = xi .* xisign;
eta = eta .* etasign;
backside = xi > pi/2;
xi(backside) = pi - xi(backside);
c0 = cos(2 * xi); ch0 = cosh(2 * eta);
s0 = sin(2 * xi); sh0 = sinh(2 * eta);
a = 2 * complex(c0 .* ch0, -s0 .* sh0);
j = maxpow;
y0 = complex(Z); y1 = y0;
z0 = y0; z1 = y0;
if mod(j, 2)
y0 = y0 + bet(j);
z0 = z0 - 2*j * bet(j);
j = j - 1;
end
for j = j : -2 : 1
y1 = a .* y0 - y1 - bet(j);
z1 = a .* z0 - z1 - 2*j * bet(j);
y0 = a .* y1 - y0 - bet(j-1);
z0 = a .* z1 - z0 - 2*(j-1) * bet(j-1);
end
a = a/2;
z1 = 1 - z1 + z0 .* a;
a = complex(s0 .* ch0, c0 .* sh0);
y1 = complex(xi, eta) + y0 .* a;
gam = atan2dx(imag(z1), real(z1));
k = b1 ./ abs(z1);
xip = real(y1); etap = imag(y1);
s = sinh(etap);
c = max(0, cos(xip));
r = hypot(s, c);
lon = atan2dx(s, c);
sxip = sin(xip);
tau = tauf(sxip./r, e2);
lat = atan2dx(tau, 1 + Z);
gam = gam + atan2dx(sxip .* tanh(etap), c);
c = r ~= 0;
k(c) = k(c) .* sqrt(e2m + e2 ./ (1 + tau.^2)) .* ...
hypot(1, tau(c)) .* r(c);
c = ~c;
if any(c)
lat(c) = 90;
lon(c) = 0;
k(c) = k(c) * cc;
end
lat = lat .* xisign;
lon(backside) = 180 - lon(backside);
lon = lon .* etasign;
lon = AngNormalize(lon + AngNormalize(lon0(:)));
gam(backside) = 180 - gam(backside);
gam = AngNormalize(gam .* xisign .* etasign);
lat = reshape(lat, S); lon = reshape(lon, S);
gam = reshape(gam, S); k = reshape(k, S);
end
function bet = betf(n)
persistent betcoeff
if isempty(betcoeff)
betcoeff = [
384796, -382725, -6720, 932400, -1612800, 1209600, 2419200, ...
-1118711, 1695744, -1174656, 258048, 80640, 3870720, ...
22276, -16929, -15984, 12852, 362880, ...
-830251, -158400, 197865, 7257600, ...
-435388, 453717, 15966720, ...
20648693, 638668800, ...
];
end
maxpow = 6;
bet = zeros(1, maxpow);
o = 1;
d = n;
for l = 1 : maxpow
m = maxpow - l;
bet(l) = d * polyval(betcoeff(o : o + m), n) / betcoeff(o + m + 1);
o = o + m + 2;
d = d * n;
end
end