-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproblem12.jl
105 lines (96 loc) · 2.43 KB
/
problem12.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
start_time = time()
function find_prime_sieve(maxPrime)
isPrime = falses(maxPrime)
mod60 = mod([1:maxPrime],60)
maxX = int(ceil(sqrt(maxPrime)))
for x = 1:maxX, y=1:maxX
n = 4*x^2+y^2
if n <= maxPrime
if contains([1 13 17 29 37 41 49 53], mod60[n])
isPrime[n] = !isPrime[n]
end
end
n = 3*x^2+y^2
if n <= maxPrime
if contains([7 19 31 43], mod60[n])
isPrime[n] = !isPrime[n]
end
end
if x>y
n = 3*x^2-y^2
if n <= maxPrime
if contains([11 23 47 59], mod60[n])
isPrime[n] = !isPrime[n]
end
end
end
end
for n = 5:maxPrime
if isPrime[n]
numSquares = int(floor(maxPrime/n^2))
for i = 1:numSquares
isPrime[i*n^2] = false
end
end
end
isPrime[1:5] = [false true true false true]
return isPrime
end
function trianglular_numbers_iter()
number = 0
i=1
while true
number = number+i
i=i+1
produce(number)
end
end
function factor(n, primes)
divisor_index = 1
divisor_dict = Dict()
while primes[divisor_index] <= n
i = 0
while mod(n, primes[divisor_index]) == 0
n = n/primes[divisor_index]
i += 1
end
i>0 ? divisor_dict[primes[divisor_index]] = i : 0
divisor_index +=1
end
return divisor_dict
end
function count_divisors(n, primes)
divisor_dict = factor(n, primes)
num_divisors = 1
for d in divisor_dict
num_divisors *= d[2]+1
end
return num_divisors
end
numbers = Task(trianglular_numbers_iter)
primes = find(find_prime_sieve(10^6))
start_time_noprime = time()
for number in numbers
num_divisors = count_divisors(number, primes)
if num_divisors>500
@printf("%d is a triangular number with %d divisors", number, num_divisors)
break
end
end
@printf("elapsed time = %0.1f ms\n", 1000*(time()-start_time))
@printf("elapsed time = %0.1f ms, excluding prime generation", 1000*(time()-start_time_noprime))
function remake(divisor_dict)
product = 1
for d in divisor_dict
product *= d[1]^d[2]
end
return product
end
#d = factor(10, primes)
#remake(d)
#count_divisors(10, primes)
#for number in numbers
# if count_divisors(number) > 500
# println(number)
# end
#end