-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproblem49.jl
74 lines (69 loc) · 1.85 KB
/
problem49.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
start_time = time()
function find_prime_sieve(max_prime)
is_prime = falses(max_prime)
mod60 = mod([1:max_prime],60)
max_x = int(ceil(sqrt(max_prime)))
for x = 1:max_x, y=1:max_x
n = 4*x^2+y^2
if n <= max_prime
if contains([1 13 17 29 37 41 49 53], mod60[n])
is_prime[n] = !is_prime[n]
end
end
n = 3*x^2+y^2
if n <= max_prime
if contains([7 19 31 43], mod60[n])
is_prime[n] = !is_prime[n]
end
end
if x>y
n = 3*x^2-y^2
if n <= max_prime
if contains([11 23 47 59], mod60[n])
is_prime[n] = !is_prime[n]
end
end
end
end
for n = 5:max_prime
if is_prime[n]
num_squares = int(floor(max_prime/n^2))
for i = 1:num_squares
is_prime[i*n^2] = false
end
end
end
is_prime[1:5] = [false true true false true]
return is_prime
end
function are_permutation(nums)
@assert(length(nums)>1)
digit_count = digits(first(nums))
for n in nums[2:]
dc = digits(n)
if dc != digit_count
return false
end
end
return true
end
function digits(n::Int)
digit_count = zeros(Int32,10)
while n > 0
digit = mod(n,10)
n = div(n,10)
digit_count[digit+1]+=1
end
return digit_count
end
max_prime = 10^4
primes = find(find_prime_sieve(max_prime))
q_offset = first(find(map((x)->x>999, primes)))
for (q,prime) in enumerate(primes[q_offset:end-2])
for (r,prime_b) in enumerate(primes[q_offset+q+1:end])
pdiff = prime_b-prime
if contains(primes, prime_b+pdiff)
are_permutation([prime prime_b prime_b+pdiff]) ? println("$prime $prime_b $(prime_b+pdiff)") : 0
end
end
end