-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathproblem50.jl
61 lines (58 loc) · 1.72 KB
/
problem50.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
start_time = time()
function find_prime_sieve(max_prime)
is_prime = falses(max_prime)
mod60 = mod([1:max_prime],60)
max_x = int(ceil(sqrt(max_prime)))
for x = 1:max_x, y=1:max_x
n = 4*x^2+y^2
if n <= max_prime
if contains([1 13 17 29 37 41 49 53], mod60[n])
is_prime[n] = !is_prime[n]
end
end
n = 3*x^2+y^2
if n <= max_prime
if contains([7 19 31 43], mod60[n])
is_prime[n] = !is_prime[n]
end
end
if x>y
n = 3*x^2-y^2
if n <= max_prime
if contains([11 23 47 59], mod60[n])
is_prime[n] = !is_prime[n]
end
end
end
end
for n = 5:max_prime
if is_prime[n]
num_squares = int(floor(max_prime/n^2))
for i = 1:num_squares
is_prime[i*n^2] = false
end
end
end
is_prime[1:5] = [false true true false true]
return is_prime
end
max_prime = 10^6
primes = find(find_prime_sieve(max_prime))
max_sum_length = 0
max_sum = 0
max_sum_prime = 0
max_sum_start_prime = 0
for (q,prime) in enumerate(primes)
sum_length = 0
consecutive_sum = 0
for (r,prime_b) in enumerate(primes[q:end])
consecutive_sum += prime_b
contains(primes, consecutive_sum) ? sum_length = r : 0
consecutive_sum >= max_prime ? break : 0
end
if sum_length > max_sum_length
max_sum_length, max_sum_prime, max_sum_start_prime = sum_length, sum(primes[q:q+sum_length-1]), prime
end
mod(q,1000) == 0 ? println(prime) : 0
end
@printf("sum_length %d starting at %d gives prime %d",max_sum_length,max_sum_start_prime, max_sum_prime)