-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathmain.m
191 lines (149 loc) · 8.43 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
//
// main.m
// MNIST
//
// Created by Gianluca Bertani on 26/02/2017.
// Copyright © 2017-2018 Gianluca Bertani. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// * Redistributions of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// * Neither the name of Gianluca Bertani nor the names of its contributors
// may be used to endorse or promote products derived from this software
// without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
// AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
// ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
// LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
// CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
// CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
#import <Foundation/Foundation.h>
#import <MAChineLearning/MAChineLearning.h>
#import "MNISTDataset.h"
#define TRAINING_IMAGES_FILE_NAME (@"train-images-idx3-ubyte")
#define TRAINING_LABELS_FILE_NAME (@"train-labels-idx1-ubyte")
#define TEST_IMAGES_FILE_NAME (@"t10k-images-idx3-ubyte")
#define TEST_LABELS_FILE_NAME (@"t10k-labels-idx1-ubyte")
#define TRAINING_COST_LIMIT (0.001)
#define TRAINING_GAIN_COST_LIMIT (0.1)
int main(int argc, const char * argv[]) {
@autoreleasepool {
@try {
////////////////////////////////////////////////////////////////
// Training
NSLog(@"Loading training datasets...");
// Load the training dataset
MNISTDataset *trainingImageSet= [[MNISTDataset alloc] initWithFileName:TRAINING_IMAGES_FILE_NAME];
MNISTDataset *trainingLabelSet= [[MNISTDataset alloc] initWithFileName:TRAINING_LABELS_FILE_NAME];
NSLog(@"Training...");
// Prepare the network
MLNeuralNetwork *net= [[MLNeuralNetwork alloc] initWithLayerSizes:@[[NSNumber numberWithUnsignedInteger:trainingImageSet.itemSize],
@300,
[NSNumber numberWithUnsignedInteger:trainingLabelSet.itemSize]]
useBias:YES
costFunctionType:MLCostFunctionTypeSquaredError
backPropagationType:MLBackPropagationTypeStandard
hiddenFunctionType:MLActivationFunctionTypeSigmoid
outputFunctionType:MLActivationFunctionTypeSigmoid];
[net randomizeWeights];
// Training loop
int epochs= 0;
MLReal lastCost= 0.0;
do {
NSDate *begin= [NSDate date];
// Run an epoch
MLReal cost= 0.0;
for (int i= 0; i < trainingImageSet.items; i++) {
// Fill the input buffer
ML_VCLR(net.inputBuffer, 1, net.inputSize);
ML_VADD([trainingImageSet itemAtIndex:i], 1, net.inputBuffer, 1, net.inputBuffer, 1, net.inputSize);
// Fill the expected output buffer
ML_VCLR(net.expectedOutputBuffer, 1, net.outputSize);
ML_VADD([trainingLabelSet itemAtIndex:i], 1, net.expectedOutputBuffer, 1, net.expectedOutputBuffer, 1, net.outputSize);
// Run the network
[net feedForward];
[net backPropagateWithLearningRate:0.1];
[net updateWeights];
// Sum the cost
cost += net.cost;
// Log every 1000 samples
if ((i > 0) && (i % 1000 == 0)) {
NSDate *end= [NSDate date];
NSTimeInterval elapsed= [end timeIntervalSinceDate:begin];
NSTimeInterval elapsedPerSample= elapsed / (double) i;
NSTimeInterval eta= (double)(trainingImageSet.items - i) * elapsedPerSample;
NSLog(@" - Trained %5d samples, %2d epochs, ETA: %6.2f secs...", i, epochs, eta);
}
}
cost /= (MLReal) trainingImageSet.items;
epochs++;
NSLog(@"- Trained %2d epochs, current error: %7.5f", epochs, cost);
// Check termination condition
if (cost < TRAINING_COST_LIMIT) {
break;
} else if (epochs > 1) {
double costGain= (lastCost - cost) / lastCost;
if (costGain < TRAINING_GAIN_COST_LIMIT)
break;
}
lastCost= cost;
} while (YES);
////////////////////////////////////////////////////////////////
// Test
NSLog(@"Finished training, loading test dataset...");
// Load the test dataset
MNISTDataset *testImageSet= [[MNISTDataset alloc] initWithFileName:TEST_IMAGES_FILE_NAME];
MNISTDataset *testLabelSet= [[MNISTDataset alloc] initWithFileName:TEST_LABELS_FILE_NAME];
// Test loop
NSUInteger matches= 0;
NSDate *begin= [NSDate date];
for (int i= 0; i < testImageSet.items; i++) {
// Fill the input buffer
ML_VCLR(net.inputBuffer, 1, net.inputSize);
ML_VADD([testImageSet itemAtIndex:i], 1, net.inputBuffer, 1, net.inputBuffer, 1, net.inputSize);
// Run the network
[net feedForward];
// Search highest value label
MLReal value= 0.0;
int label= -1;
for (int j= 0; j < net.outputSize; j++) {
if (net.outputBuffer[j] > value) {
value= net.outputBuffer[j];
label= j;
}
}
if ([testLabelSet itemAtIndex:i][label] == 1.0)
matches++;
// Log every 1000 samples
if ((i > 0) && (i % 1000 == 0)) {
NSDate *end= [NSDate date];
NSTimeInterval elapsed= [end timeIntervalSinceDate:begin];
NSTimeInterval elapsedPerSample= elapsed / (double) i;
NSTimeInterval eta= (double)(testImageSet.items - i) * elapsedPerSample;
NSLog(@"- Tested %5d samples, ETA: %6.2f secs...", i, eta);
}
}
NSLog(@"Finished testing, report: %lu/%lu matches or %.2f%%, error rate: %.2f%%",
matches,
testImageSet.items,
100.0 * ((double) matches) / ((double) testImageSet.items),
100.0 * ((double) testImageSet.items - matches) / ((double) testImageSet.items));
} @catch (NSException *e) {
NSLog(@"Exception caught: %@, reason: %@: user info: %@\nStack trace:\n%@", e.name, e.reason, e.userInfo, e.callStackSymbols);
}
}
return 0;
}