-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy patharchitectures.py
287 lines (247 loc) · 9.44 KB
/
architectures.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
import jax.numpy as jnp
from jax import random
from jax.experimental import stax # neural network library
from jax.experimental.stax import Dense, Relu, normal # neural network layers
class RealNVP:
"""
This class implements a Real NVP normalizing flow architecture. For every layer, an affine coupling block acts as
a non-linear transformation of the input. The non-linearity is encoded using a dense feed-forward neural network.
Also, every layer the coupling block is flipped, changing from a lower-triangular to an upper triangular
transformation.
"""
def __init__(self, dim: int, n_layers: int = 4, seed: int = 0):
"""
Parameters
----------
dim: int
Input and output dimension.
n_layers: int
Number of stacked coupling layers.
seed: int
It controls the seed of the pseudo-random generator.
"""
self.dim = dim
self.n_layers = n_layers
self.net_init, self.net_apply = stax.serial(Dense(512), Relu, Dense(512), Relu, Dense(self.dim))
self.seed = seed
# neural network function
def shift_and_log_scale_fn(self, u1: jnp.array, layer_params: jnp.array) -> list:
"""
A neural network returning in output shift and log-scale of the affine coupling block.
Parameters
----------
u1: jnp.array
Input of the neural network. It corresponds to half of the total input.
layer_params: jnp.array
Parameters of the neural network.
Returns
-------
shift, log_scale: tuple
Shift and log-scale of the affine couple block.
"""
s = self.net_apply(layer_params, u1)
return jnp.split(s, 2, axis=-1)
# layer forward and backward mechanisms
def forward_layer(self, u: jnp.array, layer_params: jnp.array, flip: bool = False) -> jnp.array:
"""
It implements the forward logic of an affine coupling block.
Parameters
----------
u: jnp.array
Input of the forward transformation.
layer_params: jnp.array
Parameters of the neural network for this layer.
flip: bool
Flag that flips the transformation if `True`.
Returns
-------
v: jnp.array
Output of the forward transformation layer.
"""
mid = u.shape[-1] // 2
u1, u2 = (u[:, :mid], u[:, mid:]) if u.ndim == 2 else (u[:mid], u[mid:])
if flip:
u2, u1 = u1, u2
shift, log_scale = self.shift_and_log_scale_fn(u1, layer_params)
v2 = u2 * jnp.exp(log_scale) + shift
if flip:
u1, v2 = v2, u1
v = jnp.concatenate([u1, v2], axis=-1)
return v
def backward_layer(self, v, layer_params, flip=False) -> tuple:
"""
It implements the backward logic of an affine coupling block. It returns both the output of the backward
transformation, and the log-determinant of its Jacobian, corresponding to the log-scale.
Parameters
----------
v: jnp.array
Input of the backward transformation.
layer_params: jnp.array
Parameters of the neural network for this layer.
flip: bool
Flag that flips the transformation if `True`.
Returns
-------
u, log_scale: tuple
u: jnp.array.
Output of the backward transformation.
log_scale: log-determinant of the Jacobian of the backward transformation layer.
"""
mid = v.shape[-1] // 2
v1, v2 = (v[:, :mid], v[:, mid:]) if v.ndim == 2 else (v[:mid], v[mid:])
if flip:
v1, v2 = v2, v1
shift, log_scale = self.shift_and_log_scale_fn(v1, layer_params)
u2 = (v2 - shift) * jnp.exp(-log_scale)
if flip:
v1, u2 = u2, v1
u = jnp.concatenate([v1, u2], axis=-1)
return u, log_scale
# full forward and backward mechanisms
def forward(self, u: jnp.array, all_params: list) -> jnp.array:
"""
Forward concatenation of coupling blocks. It flips them at every layer.
Parameters
----------
u: jnp.array
Input of the forward transformation.
all_params: list
Collection of neural network parameters at every layer.
Returns
-------
v: jnp.array
Output of the forward transformation.
"""
flip = False
v = u
for l in range(self.n_layers):
v = self.forward_layer(v, all_params[l], flip)
flip = not flip
return v
def backward(self, v: jnp.array, all_params: list) -> tuple:
"""
Backward concatenation of coupling blocks. It flips them at every layer. It returns both the output of the
backward transformation, and the log-determinant of its Jacobian, corresponding to the sum of log-scales at
every layer.
Parameters
----------
v: jnp.array
Input of the backward transformation.
all_params: list
Collection of neural network parameters at every layer.
Returns
-------
v, log_det_inv_jac: tuple
v: jnp.array
Output of the backward transformation.
log_det_inv_jac: jnp.array
log-determinant of the Jacobian of the backward transformation.
"""
flip = bool((self.n_layers + 1) % 2)
u = v
tot_log_scale = 0
for l in reversed(range(self.n_layers)):
u, log_scale = self.backward_layer(u, all_params[l], flip)
tot_log_scale += log_scale
flip = not flip
return u, -jnp.sum(tot_log_scale, -1)
# sampling
def sample_base(self, n_samples: int, seed: int = 0) -> jnp.array:
"""
It samples from the base distribution. Currently this is a multivariate standard Gaussian.
Parameters
----------
n_samples: int
Number of samples to sample.
seed: int
It controls the seed of the pseudo-random generator.
Returns
-------
u: jnp.array
`n_samples` samples from the base distribution.
"""
return random.normal(random.PRNGKey(self.seed + seed), (n_samples, self.dim))
def sample_forward(self, all_params: list, n_samples: int, seed: int = 0) -> jnp.array:
"""
It samples from the push-forward of the base distribution via the forward process.
Parameters
----------
all_params: list
Collection of neural network parameters at every layer.
n_samples: int
Number of samples to sample.
seed: int
It controls the seed of the pseudo-random generator.
Returns
-------
v: jnp.array
`n_samples` samples from the push-forward of the base distribution.
"""
u = self.sample_base(n_samples, seed=seed)
return self.forward(u, all_params)
# density evaluation
def evaluate_base_logpdf(self, u: jnp.array) -> jnp.array:
"""
It evaluates the log-probability density function of the base distribution.
Parameters
----------
u: jnp.array
Location where to evaluate at.
Returns
-------
lpu: jnp.array
Evaluation of the log-probability density function of the base distribution for every input location.
"""
return jnp.sum(-0.5 * u ** 2 - jnp.log(jnp.sqrt(2 * jnp.pi)), axis=-1)
def evaluate_forward_logpdf(self, v: jnp.array, all_params: list) -> jnp.array:
"""
It evaluates the log-probability density function of the push-forward distribution.
Parameters
----------
v: jnp.array
Location where to evaluate at.
all_params: list
Collection of neural network parameters at every layer.
Returns
-------
lpv: jnp.array
Evaluation of the log-probability density function of the push-forward distribution for every input location.
"""
u, ildj = self.backward(v, all_params)
return self.evaluate_base_logpdf(u) + ildj
# parameters initialization
def init_layer_params(self, seed: int = 0) -> tuple:
"""
It initializes the parameters of one neural network.
Parameters
----------
seed: int
It controls the seed of the pseudo-random generator.
Returns
-------
out_shape, layer_params: tuple
out_shape: tuple
Output shape of the neural network.
layer_params: jnp.array
Parameters of the neural network.
"""
in_shape = (-1, self.dim // 2)
out_shape, layer_params = self.net_init(random.PRNGKey(self.seed + seed), in_shape)
return out_shape, layer_params
def init_all_params(self, seed: int = 0) -> list:
"""
It initializes parameters for all neural networks.
Parameters
----------
seed: int
It controls the seed of the pseudo-random generator.
Returns
-------
all_params: list
Collection of neural network parameters at every layer.
"""
all_params = []
for l in range(self.n_layers):
out_shape, _layer_params = self.init_layer_params(seed + l)
all_params.append(_layer_params)
return all_params