
TASCAR
Toolbox for Acoustic Scene Creation And Rendering

User Manual

G. Grimm, J. Luberadzka, F. Schwark, T. Herzke, V. Hohmann:
TASCAR – User Manual
Copyright © 2013 – 2024
Carl von Ossietzky Universität Oldenburg
Marie-Curie-Str. 2
D–26129 Oldenburg

All trademarks mentioned in the text are property of their respective owners.

TASCAR version 0.233.2.4-2e1f3e1 (November 27, 2024)

Contents

1 Introduction 1

2 General remarks and invocation 1
2.1 Keyboard shortcuts in the main window . 2
2.2 Network remote control via OSC . 3
2.3 Optimization of the operating system for audio processing 5
2.4 Overwriting application default values . 7
2.5 Content ownership rights . 8

3 Scene Definition 8

4 Top level elements 10
4.1 The <session>...</session> element 10
4.2 The <scene>...</scene> element . 13

5 Objects 14
5.1 Common attributes of objects . 15
5.2 Common sub-elements of objects . 16
5.3 The <source>...</source> element . 19
5.4 The <diffuse .../> element . 24
5.5 The <receiver .../> element . 25
5.6 Receiver types . 28
5.7 Loudspeaker-based receiver types . 42
5.8 Adding diffuse reverberation: <reverb .../> 49
5.9 Reflectors: <face .../> and <facegroup .../> elements 52
5.10 Obstacles: <obstacle .../> element . 55
5.11 Masks: <mask ../> element . 56

6 General purpose modules 58
6.1 datalogging . 59
6.2 dirgain . 62
6.3 echoc . 63
6.4 glabsensors . 64
6.5 granularsynth . 67
6.6 hoafdnrot . 68
6.7 hossustain . 68
6.8 hrirconv . 69
6.9 jackrec . 70
6.10 levels2osc . 72
6.11 lightctl . 72
6.12 lsl2osc . 74
6.13 lsljacktime . 74
6.14 ltcgen . 74
6.15 matrix . 75
6.16 midicc2osc . 76
6.17 midictl . 76

iv CONTENTS

6.18 mididispatch . 77
6.19 osc2lsl . 78
6.20 osceog . 79
6.21 oscevents . 79
6.22 oscjacktime . 79
6.23 oscrelay . 80
6.24 oscserver . 80
6.25 route . 80
6.26 sampler . 81
6.27 savegains . 81
6.28 sleep . 81
6.29 system . 82
6.30 systime . 82
6.31 timedisplay . 82
6.32 touchosc . 83
6.33 transportgui . 83
6.34 waitforjackport . 83
6.35 waitforlslstream . 84

7 Actor modules 84
7.1 epicycles . 85
7.2 geopresets . 87
7.3 joystick . 88
7.4 linearmovement . 88
7.5 locationmodulator . 89
7.6 locationvelocity . 90
7.7 lslactor . 90
7.8 motionpath . 90
7.9 nearsensor . 91
7.10 orientationmodulator . 91
7.11 oscactor . 91
7.12 oscheadtracker . 92
7.13 ovheadtracker . 93
7.14 pendulum . 93
7.15 pos2lsl . 94
7.16 pos2osc . 94
7.17 qualisystracker . 95
7.18 rotator . 95
7.19 simplecontroller . 97
7.20 snapangle . 97
7.21 tracegui . 97

8 Audio plugins 99
8.1 allpass . 100
8.2 bandlevel2osc . 101
8.3 bandpass . 101
8.4 const . 102

0.233.2.4-2e1f3e1 TASCAR – User manual

CONTENTS v

8.5 delay . 102
8.6 feedbackdelay . 102
8.7 fence . 103
8.8 filter . 103
8.9 flanger . 104
8.10 gain . 104
8.11 gainramp . 104
8.12 gate . 105
8.13 hannenv . 105
8.14 identity . 106
8.15 level2hsv . 106
8.16 level2osc . 106
8.17 lipsync . 107
8.18 lipsync_paper . 108
8.19 lookatme . 108
8.20 loopmachine . 109
8.21 metronome . 109
8.22 noise . 110
8.23 onsetdetector . 111
8.24 pink . 111
8.25 pulse . 112
8.26 sessiontime . 112
8.27 simplesynth . 112
8.28 sine . 113
8.29 sndfile . 113
8.30 sndfileasync . 116
8.31 speechactivity . 116
8.32 spkcalib . 117
8.33 spksim . 117
8.34 transportramp . 118
8.35 tubesim . 118

9 Spatial mask plugins 121
9.1 fig8 . 121
9.2 multibeam . 121

10 Calibration and level metering 123
10.1 Calibrating loudspeaker layouts with tascar_spkcalib 123

11 Interfacing from MATLAB and GNU/Octave 127
11.1 tascar_ctl . 127
11.2 generate_scene . 127
11.3 tascar_jackio . 127
11.4 tascar_ir_measure . 128
11.5 send_osc . 128

12 Command line interfaces 130

TASCAR – User manual 0.233.2.4-2e1f3e1

vi CONTENTS

12.1 tascar_cli . 130
12.2 tascar_getcalibfor . 130
12.3 tascar_gpx2csv . 131
12.4 tascar_hdspmixer . 131
12.5 tascar_jackio . 132
12.6 tascar_levelmeter . 133
12.7 tascar_listsrc . 133
12.8 tascar_lsjackp . 134
12.9 tascar_lslsl . 134
12.10 tascar_osc2file . 134
12.11 tascar_osc2lsl . 135
12.12 tascar_osc_jack_transport . 136
12.13 tascar_pdf . 136
12.14 tascar_renderfile . 137
12.15 tascar_renderir . 138
12.16 tascar_sampler . 139
12.17 tascar_sceneskeleton . 140
12.18 tascar_showlicenses . 140
12.19 tascar_spk2obj . 140
12.20 tascar_validatetsc . 141
12.21 tascar_version . 141

13 Appendix 143

0.233.2.4-2e1f3e1 TASCAR – User manual

1 Introduction 1

Preface

This user manual is a work in progress, just like the entire TASCAR toolbox. We welcome
your feedback: please submit bug reports and suggestions, such as improved documentation
for specific features, directly to the TASCAR author through our GitHub issues tracker at
https://github.com/gisogrimm/tascar/issues.

1 Introduction

The TASCAR toolbox is designed for the creation and rendering of virtual acoustic environ-
ments (Grimm et al., 2015, 2016, 2019). With TASCAR, users have the capacity to construct
virtual acoustic ‘scenes’, which can be rendered in real-time and experienced through almost
any sound playback system.

Notably, these acoustic scenes can be manipulated and explored interactively by the user
in real-time, such as through the use of headphones and a joystick for directional control
within the acoustic space. Both direct sound paths and image sources, created through a
geometrical image source model, can be rendered dynamically.

However, it’s essential to clarify that TASCAR is not intended to function as a high qual-
ity room acoustics simulator. Rather, its aim is to offer a rapid and perceptually credible
approach for representing virtual acoustic environments in real-time. TASCAR is adept at
creating dynamic, interactive environments suitable for a range of applications, from hearing
aid development and assessment, adaptive changes in spatial configuration psychophysics,
soundscape simulation, to computer games.

In its simplest form, an acoustic scene consists of three types of objects: Sound sources, a
receiver and reflectors. Each of these objects occupies a specific position and orientation
within the virtual space at a specific time. To recreate the effect of a moving object, the
position or orientation of the object can be changed over time.

The position of the receiver corresponds to the point in the virtual space at which the sim-
ulation is rendered. This rendering depends on the direction of incidence relative to the
orientation of the receiver. To simulate the sound field, various acoustic phenomena such as
reflections, air absorption or diffraction are simulated. A comprehensive discussion of these
acoustic simulation methods can be found in the second chapter.

2 General remarks and invocation

TASCAR is primarily developed and tested on Linux. TASCAR is provided as a Debian pack-
age for long-term stable versions of Ubuntu Linux. For MacOS, TASCAR can be installed via
the ‘homebrew’ system. A binary version for Microsoft Windows can be found on the github
release page. Further information on installation can be found at https://tascar.org/
or on the GitHub wiki pages at https://github.com/gisogrimm/tascar/wiki.

Table 1 provides a list of the most important installation directories of the Linux version.

TASCAR – User manual 0.233.2.4-2e1f3e1

https://github.com/gisogrimm/tascar/issues
https://tascar.org/
https://github.com/gisogrimm/tascar/wiki

2 CONTENTS

/usr/share/doc/tascar documentation and user manual
/usr/share/tascar/examples example files
/usr/share/tascar/matlab tools for MATLAB and GNU Octave
/usr/share/tascar/python tools for python/blender

Table 1: List of relevant TASCAR directories on Linux installations.

After successful installation of the packages, TASCAR is available as the command tascar
or from the main applications menu, in the “sounds and video” section.

TASCAR relies heavily on the jack audio connection kit (http://jackaudio.org). It is
necessary to start jack before loading a session into TASCAR. TASCAR will attempt to start
qjackctl if the jack server is not running. This behaviour can be disabled by adding an
entry to the GUI section of the configuration file (see Section 2.4 for details):

<tascar>
<gui>
<checkforjack data="0"/>

</gui>
...

</tascar>

Jack port names in TASCAR are treated as POSIX regular expressions (Goyvaerts, 2019).
If the ^ or $ anchors are not present at the beginning or end of an expression, they will be
added at the beginning and end of the expression to achieve proper full name matching.
Please note that some characters such as .[?() (and a few others) have special meaning
as regular expressions and must be quoted for a correct match.

When using TASCAR with jackd1, memory locking may fail, resulting in the TASCAR process
being killed. If you see this behaviour, either run jack without memory locking (using the -m
flag), or use jackd2 instead.

An acoustic environment can be loaded either from the command line by specifying the
filename, or from the File menu in the main window. If loading a session file fails for some
reason, it may be helpful to run it from the command line to see additional information.

TASCAR uses SI units unless otherwise specified. Developers of new plugins are encour-
aged to use SI units for all internal and configuration variables.

2.1 Keyboard shortcuts in the main window

The TASCAR GUI can be controlled using keyboard shortcuts.

0.233.2.4-2e1f3e1 TASCAR – User manual

http://jackaudio.org

2.2 Network remote control via OSC 3

Changing the view in the main window between the elements of the menu bar on the left
side:
Alt+1 Map
Alt+2 Mixer
Alt+3 XML source
Alt+4 OSC variables
Alt+5 Licenses
Alt+6 Warnings

See Figure 1 for examples of the different views.

Opening the top menu bar elements:
Alt+F File
Alt+T Transport
Alt+V View
Alt+H Help

Opening and closing TASCAR files:
Ctrl+N Open new TASCAR scene
Ctrl+O Open a TASCAR file
Ctrl+X Open an example TASCAR file
Ctrl+R Revert to previous scene
Ctrl+W Close TASCAR scene
Ctrl+Q Quit the program

Controlling the transport of a TASCAR scene:
Space Play
Ctrl+Space Stop
Page Up Rewind
Page Down Forward
Home Previous
End Next

To show more information about an element of the scene, it can be selected in the Map view
(Alt 1) by clicking on the origin of the object. The gain controller and the corresponding part
of the XML source code will be displayed on the right side of the window, allowing to switch
between the elements by using the drop-down menu in the top right corner. There is also an
option to track the selected object in the scene map.

2.2 Network remote control via OSC

The majority of options in TASCAR can be controlled remotely via the Open Sound Control
(OSC) protocol. An OSC message comprises one or more numeric values or strings. Each
message can be transmitted to an OSC path on an OSC server. TASCAR supports both UDP
and TCP transport layers for the receipt of OSC messages. Should the necessity arise for
the utilisation of more than one transport layer or multiple ports, the “oscserver” module may
be employed (for further details, please refer to section 6.24). Additionally, a MATLAB/GNU
Octave remote control tool is available (for further details, please refer to section 11.5).

A list of OSC variables with their type and, in some cases, documentation, typi-

TASCAR – User manual 0.233.2.4-2e1f3e1

4 CONTENTS

Figure 1: Example of some main window tabs in TASCAR.

cal range and current value can be read using the special variable /sendvarsto
This OSC variable takes three string parameters: The first is a valid OSC URL, e.g.
osc.udp://localhost:9000/. The variable list is sent to this address. The second
parameter is an OSC path to send the variable list to, e.g. /getvar. The third parame-
ter, which is optional, is a prefix. If specified, only variables starting with that prefix will be
reported.

When a message to /sendvarsto arrives, first an empty message is sent to
<path>/begin. This is followed by multiple messages of format ssiss, one message
per matching OSC variable. The parameters are OSC path (s), typespec (s), indicator if the
current value is readable (i), a value range hint (s) and a help comment (s). At the end of
the list, an empty message is sent to <path>/end.

The current XML configuration can be retrieved by sending a URL and path to the
/sendxmlto variable. This OSC variable requires two string parameters: The first is a
valid OSC URL, e.g. osc.udp://localhost:9000/. The XML configuration is sent to
this address. The second parameter is an OSC path, e.g. /xml. This destination should be
able to receive string data (format s).

Please note that in some cases the maximum transmission unit of UDP messages is not
sufficient to transmit all data. In this case you should use TCP transport.

It is also possible to read OSC variables from a file. This can be achieved either through

0.233.2.4-2e1f3e1 TASCAR – User manual

2.3 Optimization of the operating system for audio processing 5

the XML variable initoscscript , or the OSC variable /runscript . In this case, every non-
empty line that does not begin with # , @ , < , or , , is interpreted as an OSC message.
The initial element of a space-separated list of words or numbers represents the path. All
subsequent elements are converted to numeric floats if feasible, whereas those that are
not are transmitted as strings. If a line commences with a comma , , the number following
the comma is interpreted as the time in seconds to await the next line’s processing. Lines
that commence with a hashtag # and those that are empty are disregarded. Lines that
commence with the “at” symbol @ indicate the presence of a “timed message.” In this context,
the numerical value immediately following the @ symbol represents the session time at which
the subsequent message is dispatched.

In the event that a space-separated list of filenames (optionally quoted to include filenames
with spaces) is specified instead of a single filename, all specified files are processed in
sequence. It should be noted that if the XML attribute scriptcancel is set to “true”, the
execution of other scripts will be aborted if a script is initiated while other scripts are still being
processed. Otherwise, the scripts will be appended. Furthermore, if the filename does not
commence with an absolute path, the session attribute scriptpath will be used as a prefix.
The default file extension for TASCAR is OSC scripts, which are designated by the extension
“.tosc”. With the session attribute initoscscript , an OSC script can be specified which will
be run after loading a session. It is important to note that the /runscript OSC command
cannot be used to read nested OSC script files. Instead, a line containing <filename should
be written into the script file at the position where the nested file filename is to be read.
The variables scriptpath and scriptext will be prefixed and appended to the filename. It
is required that there are no leading or trailing spaces in the line that begins with <.

2.3 Optimization of the operating system for audio processing

In multi-user desktop systems, it is important to assign real-time priority to the signal pro-
cessing threads of audio software. To set up real-time scheduling on the system, users in
the ’audio’ group must be granted permission to acquire real-time priority and lock memory
in RAM. To do this, edit the /etc/security/limits.conf file with superuser privileges:

sudo gedit /etc/security/limits.conf

Add these two lines if they are not already present:
@audio - rtprio 99
@audio - memlock unlimited

Now add the desired user of TASCAR to the ’audio’ group (in this example this user is called
’tascar’):

sudo adduser tascar audio

Log out and log in again (typically, no re-boot is required).

If you are aiming for low-latency processing, you should further optimize your system by
installing a low-latency kernel and an IRQ priority management tool:

TASCAR – User manual 0.233.2.4-2e1f3e1

6 CONTENTS

sudo apt install linux-lowlatency rtirq-init

When you start Jack, you should choose a realtime priority that is slightly lower than the
priority of the interrupt handler of the selected sound card. This can be checked with the
tascar_testrtprio tool in the console. A sample output may look like the following:

CPU0 CPU1 CPU2 CPU3
0: 13 0 0 0 IO-APIC 2-edge timer
8: 0 0 0 1 IO-APIC 8-edge rtc0
9: 0 0 0 0 IO-APIC 9-fasteoi acpi

16: 0 0 0 0 IO-APIC 16-fasteoi i801_smbus
18: 0 0 0 54 IO-APIC 18-fasteoi snd_hdsp

127: 0 0 0 593043 PCI-MSI 327680-edge xhci_hcd
128: 19074 0 0 0 PCI-MSI 376832-edge ahci[0000:00:17.0]
129: 0 342 0 2002167 PCI-MSI 4194304-edge enp8s0
130: 0 41 0 0 PCI-MSI 360448-edge mei_me
131: 0 0 0 0 PCI-MSI 2097152-edge rtl_pci
132: 0 0 0 0 PCI-MSI 514048-edge snd_hda_intel:card3
133: 0 297116 98 0 PCI-MSI 524288-edge nvidia

RTPRIO CLS %CPU COMMAND
5 RR 0.0 /usr/bin/pulseaudio --daemonize=no --log-target=journal
50 FF 0.0 [idle_inject/0]
50 FF 0.0 [idle_inject/1]
50 FF 0.0 [idle_inject/2]
50 FF 0.0 [idle_inject/3]
50 FF 0.0 [irq/9-acpi]
50 FF 0.0 [watchdogd]
50 FF 0.0 [irq/8-rtc0]
50 FF 0.0 [irq/16-i801_smb]
50 FF 0.0 [irq/128-ahci[00]
50 FF 0.0 [irq/130-mei_me]
50 FF 0.0 [irq/131-rtl_pci]
50 FF 0.1 [irq/133-nvidia]
50 FF 0.2 [irq/133-s-nvidi]
70 FF 0.1 [irq/127-xhci_hc]
80 FF 0.0 [irq/132-snd_hda]
85 FF 2.0 /usr/bin/jackd --sync -P85 -p4096 -m -dalsa -dhw:hdsp -r44100
-p64 -n2
90 FF 0.0 [irq/18-snd_hdsp]
99 FF 0.0 [migration/0]
99 FF 0.0 [migration/1]
99 FF 0.0 [migration/2]
99 FF 0.0 [migration/3]
99 RR 0.0 /usr/libexec/rtkit-daemon

Here you can see that the interrupt handler irq/18-snd_hdsp runs with a priority of 90,
while the real-time thread of jackd has been configured to run with a priority of 85. This
prevents the signal processing thread from interrupting communication between the sound
card and the operating system. All other devices connected to this computer will run with a
lower priority.

0.233.2.4-2e1f3e1 TASCAR – User manual

2.4 Overwriting application default values 7

CPU frequency scaling

CPU frequency scaling can cause dropouts in audio signal processing when switching be-
tween different processor clock speeds. Therefore, disable CPU frequency scaling in the
BIOS, or manually switch the CPU to maximum performance after each login, e. g., with

for c in {0..11}; do cpufreq-selector -c $c -g performance; done

or with the TASCAR provided wrapper tascar_cpufreq. If this doesn’t work please use
the CPU frequency scaling indicators of your desktop manager, or with

echo "performance" | sudo tee /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

2.4 Overwriting application default values

Some variables which do not directly affect the acoustic rendering result, e.g., GUI parame-
ters and configuration of the loudspeaker calibration tool, have built-in default values. These
values can be overwritten using an external application configuration file in XML format. The
files /etc/tascar/defaults.xml and ${HOME}/.tascardefaults.xml are read in
this order, i.e., values in the second file overwrite the system defaults. To see the configurable
variables, set the environment variable TASCARSHOWGLOBAL to “yes” start the application
from the command line, e.g.,

TASCARSHOWGLOBAL=yes tascar

or

TASCARSHOWGLOBAL=yes tascar_spkcalib

An example application configuration file can look like this:
<?xml version="1.0"?>
<tascar>

<spkcalib>
<inputport data="system:capture_29"/>
<reflevel data="80"/>

</spkcalib>
</tascar>

This will translate into these variables:

tascar.spkcalib.inputport (system:capture_29)
tascar.spkcalib.reflevel (80)

TASCAR – User manual 0.233.2.4-2e1f3e1

8 CONTENTS

2.5 Content ownership rights

Complex virtual acoustic or audiovisual environments in TASCAR often depend on a huge
amount of external files, e.g., sound files, trajectory data, 3D models, or texture and ma-
terial definitions. Keeping track of the ownership of many files can be difficult. Therefore,
TASCAR provides methods to facilitate the process of fair and legally correct distribution of
TASCAR session files. Part of these methods is the setting of authorship and license ab-
breviations of session files (see Section 4.1), and a simple text file based way of specifying
license conditions of external sound files (see 8.29). A summary of the licenses used by
a session is provided in the main window in the “Licenses” tab and with the command line
tool tascar_showlicenses. Please always check the information provided by those tools
carefully before sharing a session file.

Please note that in many cases it is illegal to remove or modify authorship and license infor-
mation from files originating from other sources.

3 Scene Definition

Virtual Acoustic Scenes are created using the XML scene definition file format. The TASCAR
scene definition (.tsc file) is a text XML file in which the user specifies all the details about
the scene using various commands, XML elements and their attributes. An example of a
scene definition is shown below (example file example_basic.tsc):

1 <?xml version="1.0" encoding="UTF-8"?>
2 <session duration="120" srv_port="9877" license="CC BY-SA 3.0" attribution="Giso

Grimm">
3 <scene name="kitchen" guiscale="6">
4 <receiver type="ortf" name="out">
5 <position>0 1.3 0.2 1.5</position>
6 <orientation>0 -165 0 0</orientation>
7 </receiver>
8 <source name="clock">
9 <position>0 0.61 -1.23 2.1</position>

10 <sound>
11 <plugins>
12 <sndfile name="sounds/clock.wav" loop="0" level="60" resample="true"/>
13 </plugins>
14 </sound>
15 </source>
16 <source name="frying_pan">
17 <position>0 0.9 1.03 0.87</position>
18 <sound>
19 <plugins>
20 <sndfile name="sounds/pan.wav" loop="0" level="85" resample="true"/>
21 </plugins>
22 </sound>
23 </source>
24 <face name="wall" width="2.4" height="0.5" reflectivity="0.9" damping="0.1">
25 <position>0 -1 1.25 0.85</position>
26 <orientation>0 -90 0 0</orientation>
27 </face>
28 </scene>

0.233.2.4-2e1f3e1 TASCAR – User manual

3 Scene Definition 9

29 <connect src="render.kitchen:out_l" dest="system:playback_1"/>
30 <connect src="render.kitchen:out_r" dest="system:playback_2"/>
31 </session>

Example 1: examples/example_basic.tsc

<scene/> , <receiver/> , <face/> , <source/> etc. are the elements and
name, loop, reflectivity, width etc. are their attributes. Figure 2 shows the representation
of this scene definition in TASCAR. The main window contains a toolbar for file interactions,
transport and time control, and controls for muting and soloing the different components of
the scene (left panel). The scene map window contains a visual representation of the scene.
Editing the scene via the graphical user interface is currently not possible.

Figure 2: Simple TASCAR scene example. Scene consist of two sources, one reflector and
one receiver.

Note: In general, if an attribute or a element is not specified in the scene definition, it is set to
default. Therefore, it is not necessary to specify all the recognized attributes and elements.

TASCAR – User manual 0.233.2.4-2e1f3e1

10 CONTENTS

4 Top level elements

Elements <session/> and <scene/> are referred to as top-level elements in TASCAR
documentation. One <session/> element can contain multiple <scene/> elements.
Together, they form the outermost building blocks of TASCAR scenes.

4.1 The <session>...</session> element

<session/> is the root element of each scene definition file. It can contain one or more
scenes (<scene/>), port connections (<connect/>), external modules (<modules/>)
and range definitions (<range/>).

Attributes of element session

name description (type, unit) def.
attribution attribution of license, if applicable (string)
duration session duration (double, s) 60
initcmd Command to be executed before first connection to jack. Can be used to

start jack server. (string)
initcmdsleep Time to wait for initcmd to start up, in seconds. (double, s) 0
levelmeter_min Level meter minimum (double, dB SPL) 30
levelmeter_mode Level meter mode (rms, rmspeak, percentile) (string)
levelmeter_range Level range of level meters (double, dB) 70
levelmeter_tc level meter time constant (double, s) 2
levelmeter_weight level meter weighting (f-weight) Z
license license type (string)
loop loop session at end (bool) false
name session name (string) tascar
playonload start playing when session is loaded (bool) false
profilingpath OSC path to dispatch module profiling information to (string)
requirefragsize Session fragment size, stop loading the session if the system fragment

size doesn’t match (int32)
0

requiresrate Session sampling rate, stop loading the session if the system sampling
rate doesn’t match (double, Hz)

0

srv_addr OSC multicast address in case of UDP transport (string)
srv_port OSC port number (string) 9877
srv_proto OSC protocol, UDP or TCP (string) UDP
starturl URL of start page for display (string)
warnfragsize Session fragment size, print a warning if the system fragment size doesn’t

match (int32)
0

warnsrate Session sampling rate, print a warning if the system sampling rate doesn’t
match (double, Hz)

0

Attributes of element connect

name description (type, unit) def.
dest jack destination port (string)
failonerror create an error if connection failed, alternatively just warn (bool) false
src jack source port (string)

0.233.2.4-2e1f3e1 TASCAR – User manual

4.1 The <session>...</session> element 11

Attributes of element range

name description (type, unit) def.
end end time (double, s) 0
name range name (string)
start start time (double, s) 0

The sampling rate and fragment size of a session is typically defined by the jack server
or the interface of the offline rendering tools. Use the attributes warnrate , requiresrate ,
warnfragsize and requirefragsize for more control over the audio back-end settings.

A session can have sub-elements <mainwindow/> and <mapwindow/> to control the win-
dow positions. These attributes are allowed:

Attributes:
x x-position of window
y y-position of window
w Width of window (default: 1600)
h Height of window (default: 480)

An example of a session with multiple scenes is:
1 <?xml version="1.0"?>
2 <session name="example" duration="120" license="CC 0">
3 <scene name="scene1">
4 ...
5 </scene>
6 <scene name="scene2">
7 ...
8 </scene>
9 <scene name="scene3">

10 ...
11 </scene>
12 </session>

Example 2: examples/example_multiplescenes.tsc

The jack transport can be controlled via the OSC paths /transport/start,
/transport/stop and /transport/locate.

OSC variables:

path fmt. range r. description
/runscript s string no Name of OSC script file to be loaded.
/scriptpath s string yes
/sendvarsto ss no
/sendvarsto sss no
/sendxmlto ss no Send session file XML code to an OSC server. First

parameter is the URL, the second is the path.
/timedmessages/add fs no
/timedmessages/clear no
/transport/addtime f no Move the current transport position by the given number

of seconds.

TASCAR – User manual 0.233.2.4-2e1f3e1

12 CONTENTS

/transport/locate f no Locate the transport to the given second.
/transport/locatei i no Locate the transport to the given audio sample.
/transport/playrange ff no Play the session in the given time interval.
/transport/start no Start the playback of the session from the current posi-

tion
/transport/stop no Stop the playback of the session
/transport/unload no Unload the scene

A special sub-element <include/> can be used to include scenes and other elements from
another session file, given by the attribute name . Example:
<?xml version="1.0"?>
<session>

<include name="session1.tsc"/>
<include name="session2.tsc"/>

</session>

Attributes:
name File name to be included
license License form of session file
attribution Attribution of session file, e.g., author name

The <include/> element can also be used at other levels; the only limitation is that the
root element of the included file needs to match the active element into which the external
file is included. In the example above, the root XML element of files session1.tsc and
session2.tsc has to be a <session/> element. Any attributes of the root element in
the included file are ignored.

The element <license/> can be used to specify additional licenses, e.g., for additional
visual content. In addition to the licenses, the authors can be specified using the <author/>
element, and a bibliography can be provided using the <bibitem/> elements:
<session license="CC BY-SA 3.0" attribution="Author1">

<license name="visuals" license="CC BY-SA-NC 3.0" attribution="Author2"/>
<author name="Author1" of="audio"/>
<author name="Author2" of="visuals"/>
<bibitem>Grimm, G., Kollmeier, B., & Hohmann, V. (2016). Spatial acoustic
scenarios in multichannel loudspeaker systems for hearing aid evaluation.
Journal of the American Academy of Audiology, 27(7), 557-566.</bibitem>

...
</session>

When at least one author is specified, then this information will be displayed while loading
the session. Please note that in many cases it is illegal to remove or modify the authorship
information from a work, or change the original license conditions. Therefore it is possible
in TASCAR to specify multiple <author/> and <license/> elements, to correctly attribute
your contributions to a session originating from other sources.

0.233.2.4-2e1f3e1 TASCAR – User manual

4.2 The <scene>...</scene> element 13

The file names provided in the name attribute of the <include/> element can be absolute
or relative. Relative file names are relative to the directory containing the root .tsc-file.

The performance of all loaded modules can be measured by setting the attribute
profilingpath to an OSC path, which can be added to the datalogging module, see Ex-
ample 3. In that case, the profiling variable contains the time used by the modules in each
processing cycles. The size attribute of the OSC variable in the data logging needs to
match the total number of modules loaded in a session (multiple <modules/> sections will
be merged).

1 <?xml version="1.0"?>
2 <session license="CC0" profilingpath="/profmod">
3 <scene>
4 <source name="a"/>
5 <source name="b"/>
6 </scene>
7 <modules>
8 <route>
9 <plugins profilingpath="/prof">

10 <timestamp path="/ts1"/>
11 <sine/>
12 <pink/>
13 <filter/>
14 <level2osc weights="Z A C" tau="1" threaded="true"

url="osc.udp://localhost:9877/"/>
15 <lipsync_paper threaded="true" path="/lipsyncp" energypath="/energyp"

strmsg="" url="osc.udp://localhost:9877/"/>
16 <lipsync threaded="true" path="/lipsync" energypath="/energy" strmsg=""

url="osc.udp://localhost:9877/"/>
17 <timestamp path="/ts2"/>
18 </plugins>
19 </route>
20 <pos2osc pattern="/*/*"/>
21 <datalogging>
22 <osc path="/prof" size="8"/>
23 <osc path="/level" size="4" ignorefirst="true"/>
24 <osc path="/lipsyncp" size="3"/>
25 <osc path="/lipsync" size="3"/>
26 <osc path="/energyp" size="5"/>
27 <osc path="/energy" size="5"/>
28 <osc path="/profmod" size="3"/>
29 <osc path="/ts1" size="1"/>
30 <osc path="/ts2" size="1"/>
31 </datalogging>
32 </modules>
33 </session>

Example 3: examples/example_profiling.tsc

4.2 The <scene>...</scene> element

Attributes of element scene

name description (type, unit) def.

TASCAR – User manual 0.233.2.4-2e1f3e1

14 CONTENTS

active render scene (bool) true
c speed of sound (double, m/s) 340
guicenter origin of GUI window (pos, m) 0 0 0
guiscale scale of GUI window of this scene (double, m) 200
guitracking object name for scene tracking (string)
id scene id, or empty to auto-generate id (string) 1
ismorder order of image source model (uint32) 1
name scene name (string) scene

Sub-elements:
<source/> , <receiver/> , <diffuse/> , <face/> , <facegroup/> ,
<obstacle/> , <description/> , <material/>

<scene/> is a top-level element of a TASCAR scene definition. An example scene definition
is given in Example 1.

5 Objects

A scene can be complemented with objects of different types (as it was already shown in the
first example of a scene definition). Objects can be any of the following types:

• sources (<source/>), diffuse sound fields (<diffuse/>)

• receivers (<receiver/>)

• reflectors (<facegroup/> , <face/>)

• obstacles (<obstacle/>)

• masks (<mask/>)

There can be many objects of different types in the scene. Each object has position and
orientation in space and time, and may also contain different attributes depending on the
type.

There are two different ways of defining the position and orientation of an object - “interactive”
and “not interactive”. First, we have to specify the “not interactive” position and orientation (it
can be also the whole trajectory of an object) in a scene definition file.

As an addition to this predefined geometry, we can steer the object using an external device,
for example a joystick, head movement tracking system or by an algorithm which generates a
certain type of movement, thus applying “interactive” type of geometry. The resulting position
and orientation of an object will be calculated by summing up these two mentioned types of
position and orientation. The difference between two types of defining the movement has
been depicted in Figure 3.

0.233.2.4-2e1f3e1 TASCAR – User manual

5.1 Common attributes of objects 15

Figure 3: Two different ways of dealing with orientation and position in TASCAR

5.1 Common attributes of objects

The following attributes are common to all scene objects:

Attributes of element objects (boundingbox diffuse face facegroup mask obstacle receiver reverb source)

name description (type, unit) def.
dlocation delta location (pos, m) 0 0 0
dorientation delta orientation (Euler rot, deg) 0 0 0
localpos local position (pos, m) 0 0 0
parent Name of parent object from same scene (string)
sampledorientation sample orientation by line fit into curve (double, m) 0
start time when rendering of object starts (double, s) 0

The delta transformation values can be overwritten by actor modules or the OSC interface.
The dorientation attribute is first rotation around Z axis, then Y axis, followed by X axis.

The render activity is limited to the interval [start,end] only if end > start. All time information
of objects, such as dynamic geometry or sound file positions, are relative to the object start
time. This object time is defined as session time minus object start time.

Muting an object disables it, i. e., muting a source will disable the sound, muting a
receiver will disable the output of the receiver, and muting a face or facegroup will
disable all image sources generated by that reflector.

Attributes of element ports (diffuse receiver sound)

name description (type, unit) def.
caliblevel calibration level (float, dB SPL) 93.9794
connect Regular expressions of port names for connections (string array)
gain port gain (float, dB) 0
inv phase invert (bool) false

TASCAR – User manual 0.233.2.4-2e1f3e1

16 CONTENTS

layers render layers (bits32) all

Attributes of element routes (diffuse face facegroup mask obstacle receiver reverb source)

name description (type, unit) def.
color html color string (string)
end end of render activity, or 0 to render always (double, s) 0
id Unique route id, empty to autogenerate (string) 22
mute Mute flag of route (bool) false
name Route name (string)
scale scale of local coordinates (float) 1
solo Solo flag of route (bool) false

All objects have these OSC variables:

OSC variables:

path fmt. range r. description
/.../pos fff no XYZ Translation in m
/.../pos ffffff no XYZ Translation in m and ZYX Euler angles in degree
/.../scale f yes object scale
/.../zyxeuler fff no ZYX Euler angles in degree

Objects which represent an audio object have these OSC variables:

OSC variables:

path fmt. range r. description
/.../mute i bool yes mute flag, 1 = muted, 0 = unmuted
/.../solo i no
/.../targetlevel f dB yes Indicator position in level meter display

5.2 Common sub-elements of objects

All scene objects (e.g. instances of <source/> , <receiver/> , <mask/> ,
<facegroup/> , <face/> , etc.) have to define their position and orientation in space
and time. The following child elements can be used to specify these parameters (see also
Example 1).

5.2.1 The <position>...</position> element

Position is specified by providing Cartesian coordinates (in meters) as well as the time point
associated with them (object time in seconds, counted with respect to the time when the
object starts to be active, see attribute start of parent element):
<position>t x y z</position>

0.233.2.4-2e1f3e1 TASCAR – User manual

5.2 Common sub-elements of objects 17

If we want the object to change its position over the course of the scene, we have to specify
more than one point in space and time:
<position>

t_1 x_1 y_1 z_1
t_2 x_2 y_2 z_2
t_3 x_3 y_3 z_3

</position>

t_n is time and x_n, y_n and z_n are the Cartesian coordinates of an object at time t_n.
The object’s position will be linearly interpolated between these points. The numbers are
separated by white space. The line breaks in this example are solely for human readability,
and not required by the TASCAR software.

We can also use an attribute to control the interpolation method:
<position interpolation="cartesian">

0 1 4 0
10 1 -4 0

</position>
<position interpolation="spherical">

0 1 4 0
10 1 -4 0

</position>

The first example will interpolate linearly in Cartesian coordinates, i. e., the object will move
on a straight line from (1,4,0) to (1,-4,0). The second example will interpolate linearly in
spherical coordinates around the origin, i. e., the object will move along an arc from (1,4,0)
to (1,-4,0).

The last position of the position track is held until the either the session, or the current position
loop iteration (see below), terminates.

Instead of defining the position track in the tsc file it can also be read from a comma-
separated file, by setting the attribute importcsv . Please note that the file needs to be
comma separated, with four numbers t, x, y, z in each row.

<position importcsv="myfile.csv"/>

Position tracks and orientation tracks can be looped by adding the attribute loop with a
number larger than zero.

<position loop="10">0 0 0 0
6 10 0 0</position>

in this case, the position/orientation is sampled with the object time modulo loop time (10
seconds), i. e., the object is moving for 6 seconds, then resting at (10,0,0) for 4 seconds,
then again moving for 6 seconds, starting at (0,0,0).

Attributes of element position

name description (type, unit) def.

TASCAR – User manual 0.233.2.4-2e1f3e1

18 CONTENTS

importcsv Read position track from the .csv-file as comma-separated values. The file
name can contain absolute or relative path. Relative paths are relative to the
session’s .tsc-file. Default: position track is contained as space-separated
text between opening and closing <position/> tags. (string)

interpolation Coordinate system in which positions are linearly interpolated between
given positions. Possible values are cartesian and spherical. (string)

cartesian

loop The value, if greater than 0, specifies the time when this position track is
repeated from 0 (double, s)

0

5.2.2 The <orientation>...</orientation> element

Orientation is specified in Euler (navigation) angles Rz,y,x, measured in degrees:
<orientation>t Rz Ry Rx</orientation>

Rz is the rotation around the z-axis, Ry around the y-axis and Rx around the x-axis. They
are applied in z,y,x order, after application of the position. If we would like the orientation
of an object to change during the scene, we can specify multiple angles and time points
associated with them:
<orientation>

t_1 Rz_1 Ry_1 Rx_1
t_2 Rz_2 Ry_2 Rx_2

</orientation>

The numbers are separated by white space. The line breaks in this example are solely for
human readability, and not required by the TASCAR software.

The last orientation of the orientation track is held until the either the session, or the current
orientation loop iteration (see below), terminates.

Instead of defining the orientation directly in the tsc file it can also be read from a comma-
separated file, by setting the attribute importcsv .

Euler orientation tracks can be looped by adding the attribute loop with a number larger than
zero.

Attributes:
importcsv Read orientation track from the .csv-file as comma-separated

values. The file name can contain absolute or relative path. Rel-
ative paths are relative to the session’s .tsc-file. Default: orien-
tation track is contained as space-separated text between open-
ing and closing <orientation/> tags.

loop The value, if greater than 0, specifies the time in seconds when
this orientation track is repeated from 0. Default: 0, no repetition.

5.2.3 The <creator>...</creator> element

Instead of defining the object’s movement manually (defining position and orientation for
each time point) we can use the creator tool.

0.233.2.4-2e1f3e1 TASCAR – User manual

5.3 The <source>...</source> element 19

8 <source name="trolley">
9 <creator>

10 <load format="csv" name="supermarket_trolley.csv"/>
11 <velocity const="1.7"/>
12 </creator>
13 <sound/>
14 </source>

In this case, the orientation is calculated as a tangent along the given path.

5.2.4 Delta-transformations

In addition to the transformation defined by the <position/> , <orientation/> and
<creator/> elements, every object has a delta-transformation which can be controlled via
OSC or by actor modules (see section 7).

5.2.5 The <navmesh/> element

The navmesh element can be used to restrict the object motion to a navigation mesh. This
is specifically useful when controlling object positions via game controllers.

Attributes of element navmesh

name description (type, unit) def.
importraw file name of vertex list (string)
maxstep maximum step height of object (double, m) 0.5
zshift shift object vertically (double, m) 0

Faces can be imported from a text file, containing space-separated lists of polygon coordi-
nates (see section 5.9 on face groups for details), or within the <faces/> sub-element.

5.3 The <source>...</source> element

Recognized attributes:

<source/> supports the attributes common to all scene objects, refer to section 5.1 Com-
mon attributes of objects on page 15 for details.

Recognized sub-elements:

<position/> , <orientation/> , <creator/> , <sound/>

<source/> is an element used to create the sound source objects in the scene definition.
Since sources are also objects, they can have a trajectory (see 5.1). A source object can
consist of one or more "sound vertices" specified with a sub-element <sound/> . There
must also be a sound content, for example from a sound file, assigned to a source. We can
assign a sound content to a source using the audio plugin <sndfile/> .

TASCAR – User manual 0.233.2.4-2e1f3e1

20 CONTENTS

In the box below we can see a definition of a simple point source object (taken from Example
1):

16 <source name="frying_pan">
17 <position>0 0.9 1.03 0.87</position>
18 <sound>
19 <plugins>
20 <sndfile name="sounds/pan.wav" loop="0" level="85" resample="true"/>
21 </plugins>
22 </sound>
23 </source>

5.3.1 The <sound .../> element

Attributes of element sound (cardioidmod door farsrc generic1storder omni), inheriting from ports

name description (type, unit) def.
airabsorption apply air absorption filter (bool) true
d distance to next sound along trajectory, or 0 for normal mode (double,

m)
0

delayline use delayline (bool) true
gainmodel gain rule, valid gain models: "1/r", "1" (string) 1/r
id id of sound vertex (string) 6
ismmax maximal ISM order to render (uint32) 2147483647
ismmin minimal ISM order to render (uint32) 0
maxdist maximum distance to be used in delay lines (float, m) 3700
minlevel Level threshold for rendering (float, dB SPL) -inf
name name of sound vertex (string)
nearfieldlimit distance arond 1/r source where the gain is constant (float, m) 0.1
rx Euler orientation (X) relative to parent (double, deg) 0
ry Euler orientation (Y) relative to parent (double, deg) 0
rz Euler orientation (Z) relative to parent (double, deg) 0
sincorder order of sinc interpolation in delayline (uint32) 0
size physical size of sound source (effect depends on rendering method)

(float, m)
0

type source directivity type, e.g., omni, cardioid (string) omni
x position relative to parent (double, m) 0
y position relative to parent (double, m) 0
z position relative to parent (double, m) 0

Another sub-element used in the example is <sound/> . With this sub-element we specify the
sound vertices of the source object, i.e., points from which the sound radiates. Properties of
the sound vertex define its radiation characteristics (type , gainmodel , size , sincorder), its
level calibration and gain characteristics (caliblevel , gain), activity processing (maxdist ,
minlevel , layers), image source model settings (ismmin , ismmax) and the relative position
and orientation (x , y , z , az , el , r , rz , ry , rx , d). Please note that the local position
relative to the object origin and orientation can be provided either in Cartesian coordinates
(x , y , z) or in spherical coordinates (az , el , r), however, these can not be mixed.

If we want to create a point source, as in the example, we will have one sound vertex exactly
at the position of the source object (so at the point specified in the element <position/>).

0.233.2.4-2e1f3e1 TASCAR – User manual

5.3 The <source>...</source> element 21

When we create a source with more than one sound vertex, the object position specified in
sub-element <position/> will now be the reference point for all the sound vertices, and
changing this position will also change the position of the sound vertices. The same holds
for the orientation of a source object consisting of more than one sound vertex. Below we
can see how such a source has to be defined:

4 <source name="piano" color="#101077">
5 <position>
6 0 -3.2 1.7 1.4
7 10 3.2 2.7 1.4
8 </position>
9 <orientation>0 -24 0 0</orientation>

10 <sound name="leftside" x="-0.7">
11 <plugins>
12 <sndfile name="sounds/jazzclub-piano1.wav" level="75"/>
13 </plugins>
14 </sound>
15 <sound name="rightside" x="0.7">
16 <plugins>
17 <sndfile name="sounds/jazzclub-piano2.wav" level="75"/>
18 </plugins>
19 </sound>
20 </source>

Example 4: examples/example_vertices.tsc

We have a source object called "audience" which is made of four sound vertices called
"guy1","guy2" etc. Their position is specified relative to the position in the sub-element
<position/> using attributes x , y and z – for example the vertex called "guy1" is located
-0.7 m from the reference point in x direction and 0.1 m in y direction.

Figure 4 presents an example of a scene containing sound sources consisting of more than
one sound vertex.

Source directivity is defined by the source module types. Currently the types “omni”, “car-
dioidmod” and “door” are supported.

Audio content can be added either from external playback (using jack ports, see the
connect attribute), or using the audio plugin <sndfile/> (see 8.29). When recording
new audio material, we recommend to follow the documentation recommendations of the
DEGA (Leckschat et al., 2020). A useful source of sound files can be found at https:
//freesound.org/.

Sounds have these OSC variables:

OSC variables:

path fmt. range r. description
/.../caliblevel f yes calibration level in dB
/.../gain f no Gain in dB
/.../globalpos fff yes global position of sound vertex in meters
/.../ismmax i yes Maximal Image Source Model order
/.../ismmin i yes Minimal Image Source Model order
/.../layers i yes Number representing the layers. Each layer is represented by

a bit, i.e., for layers 1+3 use 10

TASCAR – User manual 0.233.2.4-2e1f3e1

https://freesound.org/
https://freesound.org/

22 CONTENTS

Figure 4: Examples of sound sources and their vertices. In this scene there are point sources
like "vocals" or "guitar". There are also sound sources with more than one vertex like "guests"
(6 vertices) or "piano" (2 vertices) - the big dot close to the name of the source is the refer-
ence point for a given source.

/.../lingain f no Linear gain
/.../mute i bool yes Mute state of individual sound, independent of parent
/.../pos fff yes local position of sound vertex in meters
/.../size f yes Object size in meter
/.../zeuler f no Z orientation of the sound vertex, in degree
/.../zyxeuler fff no ZYX orientation of the sound vertex, in degree

5.3.2 Source directivity “omni”

The “omni” source directivity has no configuration variables. The sound source radiates
independently of the direction.

0.233.2.4-2e1f3e1 TASCAR – User manual

5.3 The <source>...</source> element 23

5.3.3 Source directivity “cardioidmod”

The “cardioidmod” source directivity has these attributes:

Attributes of sound element cardioidmod, inheriting from sound

name description (type, unit) def.
f6db Frequency in Hz, at which a 6 dB attenuation at 90 degrees is achieved (double, Hz) 1000
fmin Low-end limit for stabilization (double, Hz) 60

At low frequencies, the source radiates omni-directionally. At higher frequencies, a cardioid-
like radiation pattern is achieved.

5.3.4 Source directivity “door”

The “door” source directivity has these attributes:

Attributes of sound element door, inheriting from sound

name description (type, unit) def.
distance Distance by which the source is shifted behind the door (double, m) 1
falloff Distance at which the gain attenuation starts (double, m) 1
height Door height (double, m) 2
width Door width (double, m) 1
wndsqrt Flag to control von-Hann fall-off (false, default) or square-root of von-Hann fall-off (bool) false

Door sources shift the perceived source position behind a “door” shape, limited by the edges.
They are basically designed for interactive transitions between simulated rooms.

The origin of the “door” is in its center, width is measured in the local y direction and height
is measured in the local z direction.

5.3.5 Source directivity “farsrc”

The “farsrc” source is the same as “omni” except that sound is attenuated within a spherical
volume and faded in with a von-Hann ramp outside the volume, converging to a 1

r distance
law outside the ramp. It has these attributes:

Attributes of sound element farsrc, inheriting from sound

name description (type, unit) def.
distance Distance at which the fade-in starts (float, m) 1
falloff Length of fade-in area (float, m) 1

TASCAR – User manual 0.233.2.4-2e1f3e1

24 CONTENTS

5.3.6 Source directivity “generic1storder”

This source type can be controlled to vary between omni-directional and figure-of-eight di-
rectivity. See also the description of the receiver type “vmic” (Section 5.6.17 on page 41) for
details.

Attributes of sound element generic1storder, inheriting from sound

name description (type, unit) def.
a undocumented (double) 0

5.4 The <diffuse .../> element

Attributes of element diffuse, inheriting from objects ports routes

name description (type, unit) def.
falloff falloff ramp length at boundaries (float, m) 1
size size in which sound field is rendered. (pos, m) 1 1 1

Sub-elements:
<position/> , <boundingbox/> , <orientation/> , <creator/> , <plugins/>

Besides sound sources consisting of one or more vertices, there is also the possibility of
creating diffuse sound fields that “fill” the room and are equally loud within a certain volume
(e.g. isotropic babble noise in a cafeteria or distant traffic). We can define a diffuse sound
field in the following way:

5 <diffuse name="birds" size="1000 1000 1000">
6 <plugins>
7 <sndfile name="sounds/birds.wav" loop="0" level="70"

channelorder="FuMa"/>
8 </plugins>
9 </diffuse>

Example 5: examples/example_diffuse.tsc

Sound files used to create diffuse sound fields must contain 4 channels (B format, FuMa
normalisation, ACN channel sequence). The attribute size="x y z" defines the dimensions
of the box in which the diffuse sound field is audible. To achieve a smooth decay of the diffuse
sound field at the edge of this box, there is a von-Hann ramp for the attenuation of the source
outside the box. The length of the ramp is determined by the attribute falloff="..." . Like all
other objects, diffuse sound fields have a position and an orientation that refers to a position
and an orientation of the box.

An example on how to add the <addsndfile/> audio plugin to a diffuse sound field can be
found below:

5 <diffuse name="birds" size="1000 1000 1000">
6 <plugins>

0.233.2.4-2e1f3e1 TASCAR – User manual

5.5 The <receiver .../> element 25

7 <sndfile name="sounds/birds.wav" loop="0" level="70"
channelorder="FuMa"/>

8 </plugins>
9 </diffuse>

Example 6: examples/example_diffuse.tsc

Internally, TASCAR uses FuMa normalization and ACN channel sequence (“wyzx”). At most
places, the Ambisonics channel sequence and normalization can be configured. For level
metering, the RMS level of the w-channel is taken.

5.5 The <receiver .../> element

A receiver object can be thought of as a virtual microphone that captures sound in virtual
space and serves as the output of the virtual acoustic environment. The choice of the re-
ceiver type depends on the playback system and the desired rendering method. It captures
the signal of all sound sources in the scene and computes them according to their type. The
output signals of a receiver are sent to the playback system, e.g. loudspeakers or head-
phones.

Attributes of element receiver (amb1h0v amb1h1v amb3h0v amb3h3v cardioid chmap debugpos fakebf hann
hoa2d hoa2d_fuma hoa3d hoa3d_enc hrtf intensityvector itu51 micarray nsp omni ortf vbap vbap3d vmic wfs),
inheriting from objects ports routes

name description (type, unit) def.
avgdist Average distance which is assumed inside receiver

boxes, or 0 to use (1
8
V)1/3 (float, m)

0

delaycomp subtract this value from delay in delay lines (float, s) 0
diffuse render diffuse sources (bool) true
diffusegain gain of diffuse sources (float, dB) 0
fade_gain linear fade gain (float) 1
falloff Length of von-Hann ramp at volume boundaries, or -1

for normal distance model (float, m)
-1

globalmask use global mask (bool) true
image render image sources (bool) true
ismmax maximal ISM order to render (uint32) 2147483647
ismmin minimal ISM order to render (uint32) 0
layerfadelen duration of fades between layers (float, s) 1
muteonstop mute when transport stopped to prevent playback of

sounds from delaylines and reverb (bool)
false

point render point sources (bool) true
proxy_airabsorption Use proxy position for air absorption (bool) false
proxy_delay Use proxy position for delay (bool) false
proxy_direction Use proxy position for direction (bool) false
proxy_gain Use proxy position for gain (bool) false
proxy_is_relative Proxy is relative to receiver (true) or in absolute coor-

dinates (false) (bool)
false

proxy_position Proxy position (pos, m) 0 0 0
scatterdamping damping of scatter reflection filter (float) 0
scatterreflections Number of reflections created by scattering filter

(uint32)
0

TASCAR – User manual 0.233.2.4-2e1f3e1

26 CONTENTS

scatterspread Spatial spread of scattering (float, deg) 22.5
scatterstructuresize size of scatter structure (float, m) 1
type receiver type (string) omni
volumetric volume in which receiver does not apply distance

based gain model (pos, m)
0 0 0

volumetricgainwithdistance For volumetric receivers, increase gain with distance
(bool)

false

Sub-elements:
<speaker/> , <boundingbox/> , <position/> , <orientation/> , <creator/>

Attributes of element boundingbox, inheriting from objects

name description (type, unit) def.
active use bounding box (bool) false
falloff fade-out ramp length at boundaries (float, m) 1
size dimension of bounding box (pos, m) 0 0 0

A receiver encodes the signals of primary sources, image sources and diffuse sound fields
into a receiver type specific output format. Each receiver owns one jack output port for each
output channel n; the number of channels N depends on the receiver type and configuration.
The output signal of a receiver is z(t) = (z1 (t) , z2 (t) , . . . , zN (t)).

The receiver functionality can be split into a panning or directional encoding of primary and
image sources, and a decoding of first order Ambisonics diffuse signals:

z(t) =

K∑
k=1

w(pk,rel)yk(t)︸ ︷︷ ︸
panning

+

L∑
l=1

DÔrecÔ
−1
srcfl(t)

T

︸ ︷︷ ︸
diffuse decoding

(1)

In the panning part, the driving weights w = (w1, w2, . . . , wN) depend on the relative source
position in the receiver coordinate system, prel = O−1

rec (psrc − prec). For the definition of the
receiver orientation matrix Orec see Eq. 18 on page 142. yk(t) is the output signal of the
acoustic model, i.e., distance-dependent gain and air absorption, for the k-th source; K is
the number of all primary and image sources. In the diffuse decoding part, D is the receiver
type specific first order Ambisonics decoding matrix,

D =

 d1,w d1,x d1,y d1,z
...

...
...

...
dn,w dn,x dn,y dn,z

 ,

and Ôrecis the rotation matrix for first order Ambisonics signals, to compensate the receiver
orientation (see Eq. 22, page 142). fl is the first order Ambisonics signal of the l-th diffuse
sound field; L is the number of all diffuse sound fields, including diffuse reverberation inputs.

For all loudspeaker-based receiver types, D is a first order Ambisonics decoder matrix,
with optional loudspeaker density compensation and decorrelation filters. To get a max rE-
decoder, set the xyzgain attribute to 0.707 for regular horizontal loudspeaker layouts and

0.233.2.4-2e1f3e1 TASCAR – User manual

5.5 The <receiver .../> element 27

to 0.577 for regular 3D loudspeaker layouts. For Ambisonics based receiver types, D is a
diagonal matrix. By default, the decoded output of the first order Ambisonics rendering is
de-correlated using FIR all-pass filters to achieve diffuse sound fields and avoid coloration
artifacts (see decorr and decorr_length for details).

Figure 5 presents the typical connections in TASCAR and may help to visualize the role of
the receiver.

Figure 5: Typical structure of connections in TASCAR.

If the volumetric attribute defines a non-zero volume, then all sources within the receiver
volume box will be rendered with the same gain (volumetric rendering). An average distance
of (18V)1/3 with volume V is assumed, or if avgdist is given, the given value is used. Outside
the box, either a von-Hann ramp is applied (falloff > 0), or the standard distance model
is applied. With volumetric receiver settings, the delay depends on the relative distance
between the receiver origin and the source position.

OSC control

Receivers can be controlled via OSC similar to other objects (position, zyx Euler rotation,
gain). They also support fade commands:

/<scene>/<name>/fade <gain> <duration> [<starttime>]

TASCAR – User manual 0.233.2.4-2e1f3e1

28 CONTENTS

Here gain is the linear target gain, duration is the length of the fade, and the optional
third parameter starttime is the start time, at which the fade is applied. If the current
time is later than starttime then the fade is applied immediately. The fade is always
calculated using a raised cosine ramp. A new fade event will overwrite any currently ongoing
or scheduled fade events.

OSC variables:

path fmt. range r. description
/.../caliblevel f [0,120] yes
/.../diffusegain f [-30,30] yes relative gain of diffuse sound field model
/.../fade ff no
/.../fade fff no
/.../gain f no
/.../ismmax i yes
/.../ismmin i yes
/.../layers i yes
/.../lingain f no
/.../proxy/airabsorption i bool yes Use proxy position for air absorption
/.../proxy/delay i bool yes Use proxy position for delay
/.../proxy/direction i bool yes Use proxy position for direction
/.../proxy/gain i bool yes Use proxy position for gain
/.../proxy/is_relative i bool yes Proxy is relative to receiver (true) or in absolute

coordinates (false)
/.../proxy/position fff yes Proxy position in m
/.../scatterdamping f [0,1] yes damping of scatter reflection filter
/.../scatterspread f yes Spatial spread of scattering
/.../scatterstructuresize f [0,10] yes size of scatter structure in m

Proxy position

Receivers can replace the source position with a proxy position. The properties of air ab-
sorption, delay, gain, and direction can be replaced separately. Proxy position and property
selection can be controlled in the XML file or via OSC.

5.6 Receiver types

The following types of generic receivers (see Table 184 for an overview) can be used in
TASCAR:

List of generic receiver types:

• amb1h0v

• amb1h1v

• amb3h0v

• amb3h3v

• cardioid

0.233.2.4-2e1f3e1 TASCAR – User manual

5.6 Receiver types 29

• chmap

• debugpos

• fakebf

• hoa2d_fuma

• hoa3d_enc

• hrtf

• intensityvector

• itu51

• micarray

• omni

• ortf

• vmic

5.6.1 amb1h0v

First order horizontal Ambisonics encoder, B-format (FuMa channel sequence “wxy” and
normalization).
<receiver type="amb1h0v"/>

The normalization attributes normalization="FuMa" (default) or normalization="SN3D" are
supported.

5.6.2 amb1h1v

First order Ambisonics encoder, B-format (FuMa channel sequence “wxyz”).
<receiver type="amb1h1v"/>

The normalization attributes normalization="FuMa" (default) or normalization="SN3D" are
supported.

Attributes of receiver element amb1h1v, inheriting from receiver

name description (type, unit) def.
channelorder Channel order, either “ACN” (wyzx) or “FuMa” (wxyz) (string) ACN
normalization Normalization, either “FuMa” or “SN3D” (string) FuMa

TASCAR – User manual 0.233.2.4-2e1f3e1

30 CONTENTS

5.6.3 amb3h0v

Third order horizontal Ambisonics encoder, B-format (FuMa channel sequence “wyxvuqp”
and normalization).

Horizontal HOA:
<receiver type="amb3h0v"/>

N = 7, wk =


√
2 k = 0

cos(k+1
2 α) k odd

sin(k2α) k even

5.6.4 amb3h3v

Third order Ambisonics encoder, B-format (FuMa channel sequence “wyzxvtrsuqomklnp”
and normalization).
<receiver type="amb3h3v"/>

N = 16

To play back the content of a virtual scene on an arbitrary playback device, we have to use an
external tool to decode the ambisonics format (a tool which will mix the ambisonics channels
signals in an appropriate way in order to get the signals for channels of our playback system).
To achieve this, we can make a jack connection between the output of the ambisonics re-
ceiver (<scenename>.render:<receivername>.<channel>) and ambisonics decoder
"ambdec":

<receiver type="amb3h0v" name="receiver 1" connect="ambdec:in">
<position>0 1.3 0.2 1.5</position>
<orientation>0 -165 0 0</orientation>

</receiver>

If we use connect="ambdec:in", then the connections will be done, so that the channels have
the same name in both receiver output and ambdec input, as shown in the Figure 6. We can
then go to the settings of the ambdec device and find a type of output corresponding to our
playback set up (Config>>Load>>usr/share/ambdec/presets). For example if we choose a
preset octagon-3h0v, the appropriate output ports will appear (Figure 7), which can be then
connected with the system playback devices.

5.6.5 cardioid

Cardioid microphone simulation.
<receiver type="cardioid"/>

0.233.2.4-2e1f3e1 TASCAR – User manual

5.6 Receiver types 31

Figure 6: Connections, which are created, when using attribute connect in the element
<sound/>

If we use a cardioidal receiver, then sources are multiplied with a different weight (depending
on the direction of arrival, according to cardioidal directivity pattern) and at the output of the
renderer we will also get just one channel - a summation of sources coming from different
directions multiplied with different weights.

N = 1, wn = 1
2(cos(α) + 1),

where w(n) depends on the angle between the source and the receiver, α (direction from
which the source is coming).

5.6.6 chmap

Channel mapping receiver type. Each (primary or image) sound source is rendered to a
different channel. If more sources than channels are active, then the channels are wrapped
around.

Attributes of receiver element chmap, inheriting from receiver

name description (type, unit) def.

TASCAR – User manual 0.233.2.4-2e1f3e1

32 CONTENTS

Figure 7: Ambdec output ports for a horizontal octagon

channels number of output channels (uint32) 1

5.6.7 debugpos

Instead of the audio signal, the relative source position in cartesian coordinates is returned.

Attributes of receiver element debugpos, inheriting from receiver

name description (type, unit) def.
sources number of sources to output (uint32) 1

5.6.8 fakebf

Beam former simulating receiver type, to simulate the directional effects of a beamformer on
the rendering side.

0.233.2.4-2e1f3e1 TASCAR – User manual

5.6 Receiver types 33

Attributes of receiver element fakebf, inheriting from receiver

name description (type, unit) def.
angle Angular distance between microphone axes (double, deg) 110
c Speed of sound (double, m/s) 340
distance Microphone distance (double, m) 0.17
sincorder Sinc interpolation order of ITD delay line (uint32) 0
start_angle Angle at which attenutation ramp starts (double, deg) 0
stop_angle Angle at which full attenutation is reached (double, deg) 90

Attributes:
distance Microphone distance in meter (0.17)
angle Angular distance between microphone axes in degrees (110)
start_angle Angle at which attenutation ramp starts, in degrees (0)
stop_angle Angle at which full attenutation is reached, in degrees (90)
sincorder Sinc interpolation order of ITD delay line (0)
c Speed of sound in m/s (340)

5.6.9 hoa2d fuma

Horizontal higher order ambisonics encoder with FuMa normalization and ACN channel se-
quence.

Attributes of receiver element hoa2d_fuma, inheriting from receiver

name description (type, unit) def.
diffup Use diffuse upsampling similar to Zotter et al. (2014) (bool) false
diffup_delay Decorrelation delay (double, s) 0.01
diffup_maxorder Maximum order of diffuse sound fields (uint32) 100
diffup_rot Decorrelation rotation (double, deg) 45
filterperiod Filter period for source width encoding (double, s) 0.005
filtershape De-correlation filter shape for source width encoding, one of “none”, “notch”,

“sine”, “tria”, “triald” (string)
none

order Ambisonics order; 0: use maximum possible (uint32) 0

5.6.10 hoa3d enc

Higher order Ambisonics encoder (3D) with SN3D normalization and ACN channel se-
quence.

Attributes of receiver element hoa3d_enc, inheriting from receiver

name description (type, unit) def.
order Ambisonics order (int32) 3

TASCAR – User manual 0.233.2.4-2e1f3e1

34 CONTENTS

Attributes:
order Ambisonics order

5.6.11 hrtf

HRTF simulation.

This receiver describes the main features of measured head related transfer functions by
using a few low-order digital filters. The parametrization is based on the Spherical Head
Model (SHM) by Brown and Duda (1998) and includes three further low-order filters.

The SHM introduces an approach to model the head as a rigid sphere. It includes a model
for the head shadow effect as well as a method to compute the interaural time difference.
The head shadow effect is approximated by a first-order high-shelf filter which depth varies
depending on the incident angle. The high-shelf can be described by means of three param-
eters: The cut-off frequency omega , the angle thetamin at which the maximal depth of the
high-shelf is reached and the parameter alphamin which influences the maximal reached
depth of the high-shelf.

The Duda SHM was extended by O. Buttler and S.D. Ewert in the context of room acoustics
simulator RAZR (Wendt et al., 2014; Ewert, 2018) in Buttler (2018) to improve left-right,
front-back, and elevation perception:

i) a pre-warping of the azimuth angles is introduced to better match experimentally observed
interaural level differences as a function of azimuth, particularly in the frontal region.

ii) Two further first-order high-shelf filters similarly to that which realizes the SHM are used
to model pinna - respectively torso - shadow. These filters are as well described by three pa-
rameters. The two parameters alphamin_front and omega_front – respectively alphamin_up

and omega_up – are used in the same way as described for the SHM. However, the third pa-
rameter startangle_front – respectively startangle_up –, which is defined with respect
to a certain reference direction (front [1 0 0] – respectively up [0 0 1]), is used in order to
define a region of incident directions in which these filters are applied. The maximal depth is
reached at 180 degrees with respect to the reference direction.

iii) Furthermore, a notch filter is used in order to reproduce the concha notch which provides
an important feature in order to distinguish between elevation angles. This filter is applied in
the upper hemisphere for angles smaller than startangle_notch . In order to have a smooth
transition, the gain of the notch increases linearly from 0 dB at startangle_notch to the
maxgain for an incidence direction directly above the head. Moreover, the center frequency
is chosen to vary linearly over the range as well. At startangle_notch the center frequency
is equal to freq_start as changes linearly to freq_end for incidence direction right above
the head. Furthermore, the notch is described by the quality factor Q_notch .

In order to optimize the values for the filter parameters of the original RAZR SHM-Model,
the frequency response of the receiver has been fitted to measured HRTFs of the KE-
MAR dummy head (Schwark, 2020) provided by the OlHeaD-HRTF database (Denk and
Kollmeier, 2020).

0.233.2.4-2e1f3e1 TASCAR – User manual

5.6 Receiver types 35

Attributes of receiver element hrtf, inheriting from receiver

name description (type, unit) def.
Q_notch quality factor of the notch filter (float) 2.3
alphamin parameter which determines the depth of the high-shelf realizing the SHM

(float)
0.14

alphamin_front parameter which determines the depth of the second high-shelf (float) 0.39
alphamin_up parameter which determines the depth of the second high-shelf (float) 0.1
angle Position of the ears on the sphere (float, deg) 90
c Speed of sound (float, m/s) 340
decorr Flag to use decorrelation of diffuse sounds (bool) false
decorr_length Decorrelation length (float, s) 0.05
diffuse_hrtf apply hrtf model also to diffuse rendering (bool) false
freq_end notch center frequency at [0 0 1] (float, Hz) 650
freq_start notch center frequency at startangle_notch (float, Hz) 1300
gaincorr channel-wise gain correction (float array, dB) 0 0
maxgain gain applied at [0 0 1] – gain is 0 dB at startangle_notch and in-

creases linearly (float, dB)
-5.4

omega cut-off frequency of the high-self realizing the SHM (float, Hz) 3100
omega_front cut-off frequency of the second high-self (float, Hz) 11200
omega_up cut-off frequency of the second high-shelf in Hz (float, Hz) 2125
prewarpingmode Azimuth pre-warping mode, 0 = original, 1 = none, 2 = corrected (uint32) 0
radius Radius of sphere modeling the head (float, m) 0.08
sincorder Sinc interpolation order of ITD delay line (uint32) 0
sincsampling Sinc table sampling of ITD delay line, or 0 for no table. (uint32) 64
startangle_front the second high-shelf, e.g. to model pinna shadow effect, is applied

when the angle with respect to front direction [1 0 0] is larger than
startangle_front (float, deg)

0

startangle_notch notch filter to model concha notch is applied if angle with respect to up
direction [0 0 1] is smaller than startangle_notch (float, deg)

102

startangle_up the third high-shelf which models the shadow effect of the torso is ap-
plied when the angle with respect to up direction [0 0 1] is larger than
startangle_up (float, deg)

135

thetamin angle with respect to the position of the ears at which the maximum depth
of the high-shelf realizing the SHM is reached (float, deg)

160

OSC variables:

path fmt. range r. description
/.../Q_notch f yes
/.../alphamin_front f yes
/.../alphamin_up f yes
/.../alphamin f yes
/.../angle f yes
/.../decorr i bool yes
/.../diffuse_... i bool yes
/.../freq_end f yes
/.../freq_start f yes
/.../gaincorr ff no channel-wise gain correction
/.../maxgain f yes
/.../omega_front f yes
/.../omega_up f yes
/.../omega f yes
/.../prewarpingmode i [0,1,2] yes pre-warping mode, 0 = original, 1 = none, 2 = cor-

rected

TASCAR – User manual 0.233.2.4-2e1f3e1

36 CONTENTS

/.../radius f yes
/.../startangle_front f yes
/.../startangle_notch f yes
/.../startangle_up f yes
/.../thetamin f yes

5.6.12 intensityvector

This specialized receiver type accumulates the sound intensity weighted direction. This re-
ceiver type is used only for analysis and characterization of acoustic scene properties. Its
only attribute is the intensity integration time constant tau , measured in seconds, with the
default value of 0.125.

Attributes of receiver element intensityvector, inheriting from receiver

name description (type, unit) def.
tau intensity integration time constant (double, s) 0.125

5.6.13 itu51

This receiver renders for ITU 5.1 loudspeaker layouts. Point sources are panned using VBAP
on the C, L, R, Ls and Rs speakers. A warped space is used (0° mapped to C, ±45° mapped
to L and R, ±135° mapped to Ls and Rs) to achieve a stable image in the frontal speaker set
and to avoid excess intensities on the rear speakers. Diffuse sounds are rendered to L, R, Ls
and Rs speakers, without de-correlation of the speaker signals. The LFE channel is created
using an omni-directional characteristics (both, point sources and diffuse sound fields), and
low pass filtered.

Attributes of receiver element itu51, inheriting from receiver

name description (type, unit) def.
diffusegainfront Diffuse gain for frontal speakers (double, dB) -6.0206
diffusegainrear Diffuse gain for rear speakers (double, dB) 0
fc LFE cut off frequency (double, Hz) 80

5.6.14 micarray

Microphone array simulation.

This receiver implements a hierarchic parametric multi-microphone (head-)model. The (rel-
ative) transfer functions are parameterized by a filter and a delay model. For each node of
the hierarchic structure a delay model needs to be chosen (default freefield). A filter model
can be defined by setting a single or multiple filter models. Multiple filter models are applied
in a cascade. If no filter model is set, the transfer functions corresponds to a pure delay
component.

0.233.2.4-2e1f3e1 TASCAR – User manual

5.6 Receiver types 37

At the top level, only a single microphone can be added, typically representing the origin.
This signal may need to be discarded later.

Two filter types are implemented:

i) A High-Shelf Filter (highshelf)

The spatial design of this filter is an adapted version of the Spherical Head Model by Brown
and Duda (1998). As proposed by Brown and Duda, a first order high-shelf is created by the
single pole-zero pair sp = −2ω and sz = −2ω

α(θ) . However, the design function α(θ) is adopted
and additional parameters are added to allow more flexibility in the filter design. Adaptation
of the design function results in the following:

α(θ) =

(
αst

2
+

αm

2

)
+

(
αst

2
−

αm

2

)
· cos

(
θ − θst

β · (π − θst)
· π

)
∀ θ ≤ θst (2)

θ / rad

α(θ)

π
3

2π
3

1

2

3

αst

αminαm

θst

θst + β · (π − θst)

θ / rad

α(θ)

π
3 2π3

1

2

3
αst

θ / rad

α(θ)

π
3 2π3

1

2

3

αm

θ / rad

α(θ)

π
3 2π

3

1

2

3

β

θ / rad

α(θ)

π
3 2π3

1

2

3
θst

(a) Exemplary course of α(θ). (b) Influence of each parameter on α(θ).

Table 34: Relation between design parameters and course of the function α(θ).

Table 34 shows how the four parameters alpha_st , alpha_m , theta_st and beta of this filter
type can be used to vary the course of the design function and thus the spatial design of
the filter. Furthermore, the frequency omega is an additional parameter of this filter type. By
varying the frequency omega the position of the pole and the zero are varied and the range in
which the high-shelf is applied is adjusted. Moreover, the orientation axis of the filter can be
chosen freely. The angle θ is then computed with respect to the specified orientation axis .

Attributes of filter element highshelf

name description (type, unit) def.
alpha_m alpha at theta = beta*(pi-theta_st) (double) nan
alpha_st alpha for all theta < theta_st (double) nan
axis orientation axis for filter parameter variation relative to receiver orientation (pos) 0 0 0
beta parameter to determine angle at which alpha = alpha_m (double) nan
omega cut-off frequency of high-shelf (double, Hz) nan

TASCAR – User manual 0.233.2.4-2e1f3e1

38 CONTENTS

theta_st angle at which the zero position starts to vary (double, rad) nan
type filter model type (string)

ii) A Parametric Equalizer (equalizer)

With the aid of a second-order parametric equalizer a cut or boost can be created around a
certain center frequency. The spatial design of the parametric equalizer is a continuous vari-
ation in center frequency and gain. The design is defined with respect to a freely selectable
orientation axis . The gain gain_st is applied in the direction of this orientation axis . More-
over, the gain of the parametric equalizer is equal to gain_end at the angle theta_end . The
gain is continuously varied in between. The center frequency of the parametric equalizer is
continuously varied between the starting value omega_st at the orientation axis and the end
value omega_end at the angle theta_end .

Attributes of filter element equalizer

name description (type, unit) def.
Q quality factor (double) nan
axis orientation axis for filter parameter variation relative to receiver orientation (pos) 0 0 0
gain_end gain applied for all theta >= theta_end (double, dB) nan
gain_st gain applied at theta = 0 rad (double, dB) nan
omega_end center frequency for theta >= theta_end (double, Hz) nan
omega_st center frequency at theta = 0 rad (double, Hz) nan
theta_end angle until which the gain is varied (double, rad) nan
type filter model type (string)

It can be chosen between two delay models:

i) Free-Field (freefield)

This delay model determines the delay between two microphones in the free field.

ii) Sphere (sphere)

This delay models the delay of a microphone positioned on a sphere. The used formula is
the model proposed by Brown and Duda (1998) for modeling the interaural time delay for the
Spherical Head Model.

0.233.2.4-2e1f3e1 TASCAR – User manual

5.6 Receiver types 39

τ =
d · cos θ

c
fs ∀ θ τ1 =

r · cos θ
c

fs ∀ θ <
π

2
τ2 =

r · (θ − π
2)

c
fs ∀ θ ≥

π

2

τ θ

d
τ1

θ1
τ2

r

θ1
τ1

τ2 θ2

r

(a) Free-field (b) Sphere

Table 37: Used formulas and graphical representation of the delay models.

Table 37 shows the graphical representation as well as provides the used formulas for the
computation of the delay models. The delay model is always applied with respect to the
parent microphone.

Attributes of receiver element micarray, inheriting from receiver

name description (type, unit) def.
c speed of sound (double, m/s) 340

Attributes of element mic

name description (type, unit) def.
delay delay line model type, "freefield" or "sphere" (string) freefield
name microphone label (string)
position microphone position relative to receiver origin (pos, m) 0 0 0
sincorder Sinc interpolation order of delay line (double) 0
sincsampling Sampling of sinc table, or 0 for direct calculation (uint32) 64

An example of a binaural microphone array is shown below. Note that the first microphone
definition (line 2) serves only as a reference microphone whose signal is discarded. On
each side of the head, one microphone is selected as the reference of a local microphone
array (lines 3 and 8), which uses a spherical head model and head shadow filters. The other
microphones (lines 5, 6, 10 and 11) are calculated relative to the left and right reference
microphones, using only a free field delay for the relative transfer function.

1 <receiver type="micarray" name="out">
2 <mic delay="freefield" position="0 0 0">
3 <mic name="left middle" delay="sphere" sincorder="1" position="0.0 0.083

0.0">
4 <filter type="highshelf" axis="-0.14 0.95 0.29" theta_st="0.59"

beta="0.98" omega="2725.0" alpha_st="1.53" alpha_m="0.07"/>
5 <mic name="left front" delay="freefield" sincorder="1" position="0.0076

0.083 0.0"/>

TASCAR – User manual 0.233.2.4-2e1f3e1

40 CONTENTS

6 <mic name="left rear" delay="freefield" sincorder="1" position="-0.0073
0.083 0.0"/>

7 </mic>
8 <mic name="right middle" delay="sphere" sincorder="1" position="0.0 -0.083

0.0">
9 <filter type="highshelf" axis="-0.14 -0.95 0.29" theta_st="0.59"

beta="0.98" omega="2725.0" alpha_st="1.53" alpha_m="0.07"/>
10 <mic name="right front" delay="freefield" sincorder="1" position="0.0076

-0.083 0.0"/>
11 <mic name="right rear" delay="freefield" sincorder="1" position="-0.0073

-0.083 0.0"/>
12 </mic>
13 </mic>
14 </receiver>

5.6.15 omni

Omnidirectional microphone.
<receiver type="omni"/>

If we use the simple omni-directional receiver, then sources coming from all directions are
rendered with the same weight w = 1 and at the output of the renderer we will get just one
channel, N = 1 - the summation of sources from all directions:

N = 1, wn = 1

5.6.16 ortf

This receiver implements a classic ORTF stereo microphone technique. The cardioid micro-
phone characteristic is frequency dependent; the 6 dB cut-off frequency for 90 degrees is
specified by the attribute f6db . The attribute fmin defines the cut-off frequency for sources
from 180 degrees angle of incidence. To disable the frequency dependence and use a
broadband cardioid polar pattern instead, use the attribute broadband="tue" . The attributes
distance and angle control the microphone geometry.

Typical values for small diaphragm microphones are f6db="3000" and fmin="800" (these
are the default values since version 0.172.2); for higher directivity use f6db="1000" and
fmin="60" (default values for earlier versions).

Attributes of receiver element ortf, inheriting from receiver

name description (type, unit) def.
angle Angular distance between microphone axes (double, deg) 110
attscale Scaling factor for cosine attenuation function (double) 1
broadband Use broadband cardioid characteristics (bool) false
c Speed of sound (double, m/s) 340

0.233.2.4-2e1f3e1 TASCAR – User manual

5.6 Receiver types 41

decorr Flag to use decorrelatin of diffuse sounds (bool) false
decorr_length Decorrelation length (double, s) 0.05
distance Microphone distance (double, m) 0.17
f6db 6 dB cutoff frequency for 90 degrees (double, Hz) 3000
fmin Cutoff frequency for 180 degrees sounds (double, Hz) 800
sincorder Sinc interpolation order of ITD delay line (uint32) 0
sincsampling Sinc table sampling of ITD delay line, or 0 for no table. (uint32) 64

OSC variables:

path fmt. range r. description
/.../angle f yes Angular distance between microphone axes, in degree
/.../attscale f yes Scaling factor for cosine attenuation function
/.../decorr i bool yes Flag to use decorrelatin of diffuse sounds
/.../distance f yes Microphone distance, in m

Example:
<receiver type="ortf" f6db="3000" fmin="80" distance="0.17" angle="110"/>

5.6.17 vmic

Generic first-order microphone, directivity can be controlled between omni and figure-of-
eight.
<receiver type="vmic" a="0"/>

The virtual microphone receiver type has a single output channel. The driving weight is

w = 1 + a(p̃rel,x − 1). (3)

Its directivity pattern can be controlled between omni-directional and figure-of-eight with the
directivity coefficient a; with a = 0 this is an omni-directional microphone, with a = 1

2 a
standard cardioid, and with a = 1 a figure-of-eight. The diffuse decoding matrix is

D =
(√

2(1− a) a 0 0
)
. (4)

The factor
√
2 of the w-channel is needed to account for the Furse-Malham normalization of

the diffuse signals.

Attributes of receiver element vmic, inheriting from receiver

name description (type, unit) def.
a directivity coefficient (double) 0

TASCAR – User manual 0.233.2.4-2e1f3e1

42 CONTENTS

5.7 Loudspeaker-based receiver types

In addition to the generic receiver types, there are also loudspeaker-based decoding meth-
ods (VBAP, Ambisonics Panning and Nearest Speaker Panning). These require the specifi-
cation of the loudspeaker layout, i.e. their positions and, optionally, calibration data.

(a) original (b) nsp (c) vbap (d) hoa2d

Figure 8: Schematic representation of the reproduced sound fields with different reproduction
methods.

The loudspeaker layout of loudspeaker-based receiver types can be defined in a separate
layout file specified in the layout attribute, or in a list of <speaker/> elements within the
receiver definition. Each of the <speaker/> entries has the following attributes:

Attributes of element speaker

name description (type, unit) def.
az Azimuth (double, deg) 0
calibrate Use this loudspeaker during calibration (bool) true
compB FIR filter coefficients for speaker calibration (double array)
connect Connection to jack port (string)
conv Name of impulse response for convolution (string)
delay Static delay (double, s) 0
el Elevation (double, deg) 0
eqfreq Frequencies for IIR filter design (float array, Hz)
eqgain Gains for IIR filter design (float array, dB)
eqstages Number of biquad-stages in IIR frequency correction (0 = disable) (uint32) 0
gain Broadband gain correction (double, dB) 0
label Additional port label (string)
r Distance (double, m) 1

In addition to regular broadband loudspeakers, a number of subwoofers can be defined using
<sub/> elements with the same attributes as in the <speaker/> element. When subwoofers
are defined, an IIR crossover filter with 24 dB/octave is applied to all signals. The subwoofer
signals are spatially mapped from the broadband loudspeaker positions to the subwoofer
positions using a modified DBAP (Lossius et al., 2009) method.

0.233.2.4-2e1f3e1 TASCAR – User manual

5.7 Loudspeaker-based receiver types 43

To enable the FIR loudspeaker correction filter, provide the FIR filter coefficients in the compB

attribute. Note that the filter coefficients are sample rate specific and are not automatically
recalculated when the sample rate is changed. The maximum length of the correction filter
is the size of the audio fragment plus one.

The top-level element of a layout file, <layout/> , can be configured with these attributes:

Attributes of element layout

name description (type, unit) def.
addring Create a circular layout with this number of speakers (uint32) 0
addsphere Create a spherical layout with at least this number of speakers by barycentric

subdivision (uint32)
0

calibdate Calibration date in format YYYY-MM-DD (string)
calibfor Summary of receiver parameters (string)
caliblevel Calibration level (double, dB SPL) 93.9794
checksum autogenerated value for validation of calibration (uint64) 0
convlabels Space-separated list of labels of convolution output channels (string array)
convprecalib Apply convolution before calibration (true) or after (false). (bool) true
decorr Decorrelate speaker signals in diffuse sound field rendering (bool) true
decorr_length Length of decorrelation filter (double, s) 0.05
densitycorr In diffuse rendering, correct gains locally for loudspeaker density (bool) true
diffusegain Calibration gain of diffuse sound fields (double, dB) 0
fcsub Cross-over frequency, used only if subwoofers are defined (double, Hz) 80
name Name of layout, for documentation only (string)
onload system command to be executed when layout is loaded (string)
onunload system command to be executed when layout is unloaded (string)
sofa_file SOFA convolution file (string)
xyzgain XYZ-gain for FOA decoding (float) 1

Changing any of these attributes (except calibdate) may affect the output calibration and
require re-calibration.

If the caliblevel is provided in the receiver element and in the layout file, a warning is issued
and the value from the layout file is used. If a calibration date is provided and the calibration
is older than 30 days, a warning is displayed.

As the calibration values may depend on the rendering method and its parameters, the
calibfor attribute must be set to the correct value for the session file in which the
loudspeaker layout is used. These values can be queried using the command line tool
tascar_getcalibfor which prints out the correct value for each loudspeaker-based re-
ceiver type used in a session file.

A simple example of a loudspeaker layout file is shown in Example 7.
1 <?xml version="1.0"?>
2 <layout>
3 <speaker el="30" az="45" r="12"/>
4 <speaker el="0" az="40" r="3"/>
5 <speaker el="60" az="4" r="1"/>
6 <speaker el="0" az="-40" r="0"/>
7 </layout>

Example 7: examples/nsp.spk

TASCAR – User manual 0.233.2.4-2e1f3e1

44 CONTENTS

Attributes common to all loudspeaker-based layouts are:

Attributes of element speakerbased (hann hoa2d hoa3d nsp vbap vbap3d wfs)

name description (type, unit) def.
layout name of speaker layout file (string)
showspatialerror show absolute and angular error for rE and rV for 2D and 3D rendering,

given the actual speaker layout and settings (bool)
false

spatialerrorpos Additional point list in Cartesian coordinates for testing spatial error (pos
array, m)

For all receiver types that utilize loudspeakers, an impulse response can be designated
for convolution for each loudspeaker channel, as indicated by the conv attribute of the
<speaker/> element in the layout definition. If an impulse response is assigned to one chan-
nel, a corresponding impulse response with the same channel count must also be specified
for all other channels.

The convolution’s output will be available in supplementary output channels; you can assign
the names of these channels using the convlabels attribute. The convolution may be carried
out either prior to or following the compensation for loudspeaker gain and delay.

Bear in mind, this method is currently not compatible with layouts that include subwoofer def-
initions. If you wish to utilize HRTF databases in SOFA format, use the sofa_file attribute.
At present, only binaural SOFA databases are supported. Here is an example:

<scene>
...
<receiver type="hoa2d">
<layout addring="16" sofa_file="MIT_KEMAR_normal_pinna.sofa"/>

</receiver>
</scene>

OSC variables:

path fmt. range r. description
/.../decorr i bool yes
/.../densitycorr i bool yes

List of speaker based receiver types:

• hann

• hoa2d

• hoa3d

• nsp

• stereo

• vbap

0.233.2.4-2e1f3e1 TASCAR – User manual

5.7 Loudspeaker-based receiver types 45

• vbap3d

• wfs

5.7.1 hann

Panning of audio between two best-matching speakers with von-Hann ramps.
<receiver type="hann" wexp="0.5">...</receiver>

If N speakers are defined, α is the angle between a speaker k and the virtual sound source,
and γ is the window exponent (wexp), then the speaker gain gk is

wk =

(
1

2
+

1

2
cos

(
N

2
α

))γ

(5)

Attributes of receiver element hann, inheriting from receiver speakerbased

name description (type, unit) def.
wexp window exponent γ (double) 0.5

5.7.2 hoa2d

Horizontal higher-order Ambisonics with embedded decoder, for regular loudspeaker layouts.
<receiver type="hoa2d" order="3" maxre="true">...</receiver>

This receiver type provides horizontal higher order ambisonics with basic or max rE decod-
ing. If order is zero or unset, then the maximum possible order for the given number of
loudspeakers is used.

Attributes of receiver element hoa2d, inheriting from receiver speakerbased

name description (type, unit) def.
diffup Use diffuse upsampling similar to Zotter et al. (2014) (bool) false
diffup_delay Decorrelation delay (double, s) 0.01
diffup_maxorder Maximum order of diffuse sound fields (uint32) 100
diffup_rot Decorrelation rotation (double, deg) 45
filterperiod Filter period for source width encoding (double, s) 0.005
filtershape De-correlation filter shape for source width encoding, one of “none”, “notch”,

“sine”, “tria”, “triald” (string)
none

maxre Use max r_E decoder (true) or basic decoder (false) (bool) false
order Ambisonics order; 0: use maximum possible (uint32) 0

OSC variables:

TASCAR – User manual 0.233.2.4-2e1f3e1

46 CONTENTS

path fmt. range r. description
/.../diffup_delay f yes
/.../diffup_maxorder i yes
/.../diffup_rot f [0,360] yes
/.../diffup i bool yes

Note:

Only regular speaker arrays can be used. Explicit speaker distributions are ignored, and
a regular speaker distribution with counter-clockwise azimuths is assumed, with the first
speaker starting at the value provided in the rotation attribute. If the rotation attribute
is not given, then the average difference between a regular layout and the explicit speaker
azimuth is taken as rotation .

If diffup is set to “true”, diffuse-decoding is using the internal decoder, which is also used for
decoding of panned sources. If diffup is set to “false”, the standard speaker-based diffuse
render method is applied. Source-width encoding splits the signal into two uncorrelated
signals and creates virtual sound sources separated by the source width.

An alternative receiver type hoa2d_fuma can be used to return the encoded signal in FuMa
normalization and ACN channel sequence.

5.7.3 hoa3d

Higher order Ambisonics receiver (3D) with embedded decoder, for arbitrary 3D speaker
layouts.

Attributes of receiver element hoa3d, inheriting from receiver speakerbased

name description (type, unit) def.
dectype Decoder type, “basic”, “maxre” or “inphase” (string) maxre
decwarnthreshold Warning threshold for decoder matrix abs/rms ratio (double) 8
method Decoder generation method, “pinv” or “allrad” (string) pinv
order Ambisonics order (int32) 3
savedec Save Octave/Matlab script for decoder matrix debugging (bool) false

Either the Ambisonics mode matching method using the pseudo-inverse of the encoding
matrix can be used, method="pinv" , or the ALLRAD method via regular virtual speakers
rendered with VBAP, method="allrad" . See Daniel (2001) and Heller et al. (2012); Heller
and Benjamin (2014) for details; the decoding methods have been validated against the
Ambisonics Decoder Toolbox (Heller and Benjamin, 2014). Except for minor differences in
the underlying triangulation method the results are comparable.

Note:

No automatic order calculation from based on the loudspeaker layout is applied, thus it is
always required to configure the correct Ambisonics order.

0.233.2.4-2e1f3e1 TASCAR – User manual

5.7 Loudspeaker-based receiver types 47

Note:

With AllRAD decoder, the triangulation of the speaker layout may differ depending on the
operating system and version due to different numerical resolutions. This can lead to different
speaker channel signals, but the effects on perception should be negligible.

5.7.4 nsp

Nearest speaker selection, i.e., always a single speaker is used to render a virtual sound
source. In case of moving sources or receivers, the transition between two speakers will be
linearly interpolated within one audio block.
<receiver type="nsp"><speaker az="0"/>...</receiver>

This receiver also requires defining the position of the playback channels and we can do it in
the following way (see example_nearest.tsc):

4 <receiver name="nearestspeaker" type="nsp" layout="nsp.spk">
5 <position>0 0 0 1.6</position>
6 <orientation>0 34 0 0</orientation>
7 </receiver>

Example 8: examples/example_nearest.tsc

2 <layout>
3 <speaker el="30" az="45" r="12"/>
4 <speaker el="0" az="40" r="3"/>
5 <speaker el="60" az="4" r="1"/>
6 <speaker el="0" az="-40" r="0"/>
7 </layout>

Example 9: examples/nsp.spk

If we load a scene with such a receiver in TASCAR, we will see all the specified channels
as an output of the rendering stage in the Jack Audio. However, this time, for each source
there is only one channel which is active, i.e. the one for which there is the lowest angular
distance from the loudspeaker to the source.

The attribute useall activates all speakers independent of the source position.

Attributes of receiver element nsp, inheriting from receiver speakerbased

name description (type, unit) def.
useall activate all speakers independent of source position (bool) false

OSC variables:

path fmt. range r. description
/.../useall i bool yes

TASCAR – User manual 0.233.2.4-2e1f3e1

48 CONTENTS

5.7.5 stereo

Simple stereo receiver based on VBAP
<receiver type="stereo" layout="stereo.spk"/>

This module is inheriting from speaker based receiver methods and has no specific at-
tributes.

5.7.6 vbap

2-dimensional VBAP.
<receiver type="vbap" layout="spkeaker.spk"/>

This module inherits from speaker based receiver methods and has no specific attributes.
Note that 2-dimensional VBAP only works with flat layout files, i.e. all elevation angles must
be zero, which is the default.

5.7.7 vbap3d

3-dimensional VBAP Pulkki (1997).
<receiver type="vbap3d" layout="spkeaker3d.spk"/>

This module inherits from speaker based receiver methods and has no specific attributes.
Note that 3-dimensional VBAP only works with non-flat layout files, i.e. the convex hull must
cover the origin.

Note:

The triangulation of the speaker layout may differ depending on the operating system and
version due to different numerical resolutions. This can lead to different speaker channel
signals, but the effects on perception should be negligible.

5.7.8 wfs

This receiver defines a very simple WFS renderer. Loudspeaker distance is compensated
for planar source wave fronts. The gain is proportional to the cosine of the angle between
source and speaker, for angles smaller than 90 degrees, and zero otherwise.

Attributes of receiver element wfs, inheriting from receiver speakerbased

0.233.2.4-2e1f3e1 TASCAR – User manual

5.8 Adding diffuse reverberation: <reverb .../> 49

name description (type, unit) def.
c Speed of sound (float, m/s) 340
planewave Simlate always plane waves independent of distance (bool) true

OSC variables:

path fmt. range r. description
/.../planewave i bool yes

5.8 Adding diffuse reverberation: <reverb .../>

To generate diffuse reverberation in TASCAR, signal components from the image source
model must be transferred to the diffuse sound field model. There are two options for this:
Either external reverberation generators can be used, which receive their input signals via
JACK and also reproduce the reverberation signal in Ambisonics format via JACK. For this,
a <receiver/> must be used to transmit from the image source model to the external
reverberation module, and a diffuse sound field (<diffuse/>) must be used to transmit
from the external reverberation module to TASCAR. Another option is to use the TASCAR
internal reverberation generators. In this method, the <reverb/> element combines both
the receiver and the diffuse sound field into a single object. The type of the reverb plugin is
specified with the type attribute, which can be any of the types listed below. Diffuse sources
do not contribute to diffuse reverberation.

Both methods have in common that the receiver does not follow the normal distance laws, but
renders all sources within a given volume with equal gains and delays. This is achieved by
the attribute volumetric ; this attribute defines the shoebox-shaped volume in which sound
sources contribute to the reverberation.

Under the hood, the <reverb/> element combines a dedicated receiver with a diffuse sound
field. Therefore, most common attributes of receivers (see 5.5) can be used here as well. To
create diffuse reverberation with external convolution or algorithmic reverb tools connected
via jack, you may use a receiver plugin, set the volumetric attribute, and add a diffuse sound
field using the same position, orientation and dimension as the volumetric receiver.

A very basic FDN and a partitioned convolution module are provided as part of TASCAR. An
example of diffuse reverberation using the “simplefdn” plugin looks like this:

35 <reverb type="simplefdn" volumetric="3 3 3" image="false">
36 <position>0 0 0 1.5</position>
37 </reverb>

Example 10: examples/example_diffreverbnew.tsc

The attribute “volumetric” defines the shoe-box shaped volume in which sound sources are
rendered.

Reverb receivers have the attribute layers , which defines the layers in which the receiver
receives sound, and outputlayers , which defines the layers in which the diffuse sound field
is reproduced.

TASCAR – User manual 0.233.2.4-2e1f3e1

50 CONTENTS

Attributes of element reverb (foaconv simplefdn), inheriting from objects routes

name description (type, unit) def.
avgdist Average distance which is assumed inside receiver

boxes, or 0 to use (1
8
V)1/3 (float, m)

0

caliblevel calibration level (float, dB SPL) 93.9794
connect Regular expressions of port names for connections

(string array)
delaycomp subtract this value from delay in delay lines (float, s) 0
diffuse render diffuse input sound fields (bool) false
fade_gain linear fade gain (float) 1
falloff Length of von-Hann ramp at volume boundaries, or -1

for normal distance model (float, m)
-1

gain port gain (float, dB) 0
globalmask use global mask (bool) true
image render image sources (bool) true
inv phase invert (bool) false
ismmax maximal ISM order to render (uint32) 2147483647
ismmin minimal ISM order to render (uint32) 0
layerfadelen duration of fades between layers (float, s) 1
layers render layers (bits32) all
muteonstop mute when transport stopped to prevent playback of

sounds from delaylines and reverb (bool)
false

outputlayers output layers (bits32) all
proxy_airabsorption Use proxy position for air absorption (bool) false
proxy_delay Use proxy position for delay (bool) false
proxy_direction Use proxy position for direction (bool) false
proxy_gain Use proxy position for gain (bool) false
proxy_is_relative Proxy is relative to receiver (true) or in absolute coor-

dinates (false) (bool)
false

proxy_position Proxy position (pos, m) 0 0 0
scatterdamping damping of scatter reflection filter (float) 0
scatterreflections Number of reflections created by scattering filter

(uint32)
0

scatterspread Spatial spread of scattering (float, deg) 22.5
scatterstructuresize size of scatter structure (float, m) 1
type receiver type (string) omni
volumetric volume in which receiver does not apply distance

based gain model (pos, m)
0 0 0

volumetricgainwithdistance For volumetric receivers, increase gain with distance
(bool)

false

List of reverb receiver types:

• foaconv

• simplefdn

5.8.1 foaconv

This receiver implements a partitioned convolution with First Order Ambisonics (FOA) im-
pulse responses.

0.233.2.4-2e1f3e1 TASCAR – User manual

5.8 Adding diffuse reverberation: <reverb .../> 51

Attributes of reverb element foaconv, inheriting from reverb

name description (type, unit) def.
channelorder Channel order of FOA response, either “FuMa” (wxyz) or “ACN” (wyzx) (string) ACN
irsname Name of IRS sound file (string)
maxlen Maximum length of IRS, or 0 to use full sound file (uint32, samples) 0
normalization Normalization of FOA response, either “FuMa” or “SN3D” (string) FuMa
offset Offset of IR in sound file (uint32, samples) 0

5.8.2 simplefdn

This receiver implements a simple Feedback Delay Network (FDN) based on Schroeder
(1962) and Rocchesso and Smith (1997). It uses a first order Ambisonics sound field for
each audio sample, and applies a rotation at each reflection.

To set the room dimensions, use the volumetric attribute. By default, the T60 is calculated
using the Sabine’s formula, see absorption . If an explicit T60 is provided, this is used and
the absorption attribute is ignored.

If the variables vcf and vt60 are specified, an iterative optimization process will be started.
Resulting optimized parameters will be printed at the console and can be used for further
usage as long as the sampling rate or other parameters of the plugin are not altered.

d
e
la
y
s

fi
lt
e
r

ro
ta
ti
o
n

feedback
matrix

su
m

output

input

p
re
-fi
lt
e
r

e
n
co
d
e

Figure 9: Signal flow in the FDN module. Each line corresponds to a First Order Ambisonics
signal.

Attributes of reverb element simplefdn, inheriting from reverb

name description (type, unit) def.
absorption Absorption used in Sabine’s equation (float) 0.6
c Speed of sound (float, m/s) 340
damping Damping (first order lowpass) coefficient to control spectral tilt of T60

(float)
0.3

TASCAR – User manual 0.233.2.4-2e1f3e1

52 CONTENTS

dw Spatial spread of rotation (float, rounds/s) 60
fdnorder Order of FDN (number of recursive paths) (uint32) 5
fixcirculantmat Apply fix to correctly initialize circulant feedback matrix (bool) false
forwardstages Number of feed forward stages (uint32) 0
gainmethod Gain calculation method (string, original mean schroeder) original
lowcut low cut off frequency, or zero for no low cut (float, Hz) 0
numiter Number of iterations in T60 optimization (uint32) 100
prefilt Apply additional filter before inserting audio into FDN (bool) true
t60 T60, or zero to use Sabine’s equation (float, s) 0
truncate_forward Truncate delays of feed forward path (bool) false
vcf Center frequencies for T60 optimization, or empty for no optimization

(float array, Hz)
vt60 T60 at specified center frequencies (float array, s)

OSC variables:

path fmt. range r. description
/.../dim_damp_absorption fffff no Set dimension (x,y,z in m), damping and absorption

coefficient
/.../fixcirculantmat i bool no Fix a neglegible bug in the feedback matrix design

The output signal has ACN channel order and FuMa normalization.

5.9 Reflectors: <face .../> and <facegroup .../> elements

TASCAR uses a geometric image source model. Primary sound sources can be mirrored at
reflectors if they meet the visibility criteria: The primary sound source must be in the direction
of the face normal of the reflector, and the closest point between the plane defined by the
reflector and the sound source must be within the surface boundary, or edge diffraction must
be enabled for the reflectors.

The audio signal from the image sound source is a filtered copy of the signal from the primary
sound source. The reflection filters are determined by the material properties, and can
be specified either in terms of filter coefficients or as a material definition with frequency-
dependent absorption coefficients, see below.

The <face/> element defines a single reflecting surface.

Attributes of element face, inheriting from objects routes

name description (type, unit) def.
damping Damping coefficient (float) 0
edgereflection Apply edge reflection in case of not directly visible image source (bool) true
height Height of reflector (double, m) 1
layers render layers (bits32) all
material Material name, or empty to use coefficients (string)
reflectivity Reflectivity coefficient (float) 1
scattering Relative amount of scattering (float) 0
vertices List of Cartesian coordinates to define polygon surface (pos array, m)

0.233.2.4-2e1f3e1 TASCAR – User manual

5.9 Reflectors: <face .../> and <facegroup .../> elements 53

width Width of reflector (double, m) 1

If the attribute vertices contains at least three coordinates then a polygon surface is con-
structed using the vertices list. Otherwise, a rectangular surface with the given width and
height is created. The vertices of the reflector are at (0, 0, 0), (0, w, 0), (0, w, h) and (0, 0, h).
The face normal, i.e., the reflecting side of the surface, is pointing in positive x-axis.

In example_reflectors.tsc both cases are shown:
4 <face name="triangle" vertices="0 0 0 1 2 0 2 0 0" color="#ffd500">
5 <position>0 0 1.25 0.85</position>
6 <orientation>0 -30 0 0</orientation>
7 </face>
8 <face name="rectange" width="2.4" height="0.5" color="#00ff80">
9 <position>0 -0.5 0 0.85</position>

10 <orientation>0 5 0 0</orientation>
11 </face>

Example 11: examples/example_reflectors.tsc

The <facegroup/> element creates a group of polygon reflectors, with common reflection
properties.

Attributes of element facegroup, inheriting from objects routes

name description (type, unit) def.
damping Damping coefficient (float) 0
edgereflection Apply edge reflection in case of not directly visible image source (bool) true
importraw File name of raw file containing list of polygon surfaces (string)
layers render layers (bits32) all
material Material name, or empty to use coefficients (string)
reflectivity Reflectivity coefficient (float) 1
scattering Relative amount of scattering (float) 0
shoebox Generate a shoebox room of these dimensions (pos, m) 0 0 0
shoeboxwalls generate shoebox room without floor and ceiling (pos, m) 0 0 0

Reflection properties can be defined either by explicitely setting the reflection filter coeffi-
cients damping and reflectivity , or by selecting a material, previously defined within in the
scene using the <material/> element:

Attributes of element material

name description (type, unit) def.
alpha Absorption coefficients (float array) 0.013 0.015 0.02 0.03 0.04 0.05

f Frequencies at which alpha is provided (float array, Hz) 125 250 500 1000 2000 4000

name Name of material (string) plaster

Some basic material definitions are built into TASCAR, see Table 62.

Some properties can be changed via OSC messages:

TASCAR – User manual 0.233.2.4-2e1f3e1

54 CONTENTS

Table 62: Absorption coefficients of built-in material definitions.

name 125 Hz 250 Hz 500 Hz 1 kHz 2 kHz 4 kHz
parquet 0.04 0.04 0.07 0.06 0.06 0.07
window 0.35 0.25 0.18 0.12 0.07 0.04
concrete 0.36 0.44 0.31 0.29 0.39 0.25
acoustic_tiles 0.05 0.22 0.52 0.56 0.45 0.32
plaster 0.013 0.015 0.02 0.03 0.04 0.05
carpet_on_concrete 0.02 0.06 0.14 0.37 0.60 0.65
metal_8mm 0.50 0.35 0.15 0.05 0.05 0.00

OSC variables:

path fmt. range r. description
/.../damping f [0,1[yes Damping coefficient
/.../layers i yes Number representing the layers. Each layer is represented

by a bit, i.e., for layers 1+3 use 10
/.../reflectivity f [0,1] yes Reflectivity of object
/.../scattering f [0,1] yes Scattering coefficient

Element <facegroup/> behaves also as an object, since it also has a position and orienta-
tion in space. So if we change the position or orientation of the whole <facegroup/> , it will
also relatively change for all the planes included in the <facegroup/> .

We can define a <facegroup/> in the following way (see example
example_reflectors.tsc):

12 <facegroup name="mirrors" color="#2a00ff">
13 <position>0 -1 -1.25 0.85</position>
14 <orientation>0 -90 0 0</orientation>
15 <faces>0 0 0 1 2 0 2 0 0
16 -4 -2 0 -4 0 0 -1 0 0 -1 -2 0</faces>
17 </facegroup>

Example 12: examples/example_reflectors.tsc

First, we define the facegroup with the name, reflectivity as well as the position and orien-
tation of the whole facegroup. Then, we use a sub-element <faces/> (not the same as
<face/> !) to define the surfaces which will be included in the group. Each line has to
contain the coordinates x y z for at least three vertices. Each surface is defined in one line
(by specifying coordinates of the vertices of a surface). At this point in the code we shouldn’t
leave empty lines.

Instead of defining all the surfaces manually, they can be modeled in blender (blender 2.79
– the scripts do not yet work with blender 2.80). The meshes can be exported with:

tascar_blenderexport blendfile.blend

This will export the meshes of all blender mesh objects of the currently se-
lected scene, or if available, from the scene named “tascar”, to the file
<blendfilename>_<objectname>.raw and all curve objects to a TASCAR track
file <blendfilename>_<objectname>.csv. Curve objects may set the custom property

0.233.2.4-2e1f3e1 TASCAR – User manual

5.10 Obstacles: <obstacle .../> element 55

“speed” (see “Custom properties” in the “Object” tab in the blender property view), to set the
speed in m/s.

It is recommended to minimize the number of faces, e.g. by using polygon faces instead
of triangulated faces. Also only the acoustically relevant surfaces should be modeled, e.g.
typically only the top of a table is acoustically important, but a table modeled for visualization
also contains the bottom, legs and side surfaces. If all these surfaces were imported into
TASCAR, one image source would be created for each of the reflectors and primary sources,
which would lead to a waste of computational performance. Small structures can be better
modeled using the scattering attribute of reflectors. Late reverberation can be modeled
independently of the image source model (see Section 5.8).

When we already have a text file, where the coordinates for all the vertices are already
specified, we can import it to TASCAR scene definition using an attribute importraw :
<facegroup name="mirrors" reflectivity="1" damping="0" importraw="filename.raw"/>

A simple shoebox shaped room can be created by setting the attribute shoebox="x y z" to
a finite size. The size is given in x, y, z dimensions. All faces are pointing inwards.

The normal of faces, i.e., the face orientation, is relevant for the acoustics simulation: Image
sources are only active if the primary source is in the direction of the face normal.

Polygons meshes are flattened by a projection on a plane which is orthogonal to the polygon
normal vector.

5.9.1 Scattering

TASCAR contains a very simple scattering model. For each reflector the amount of scattering
can be controlled using the scattering attribute. This is added to the diffuse sound field
model path. By default, the spatial dispersion of the scattering is reproduced by the receiver’s
decorrelation stage, if enabled. Optionally, the scattering can be rendered explicitly using
additional virtual sound sources added to the diffuse sound field model. This can be enabled
in each receiver by setting the attribute scatterreflections to a number greater than zero.
Reasonable values with a reasonable trade-off between computational effort and spatial
dispersion are 4 to 8.

5.10 Obstacles: <obstacle .../> element

Obstacles are polygon meshes which can absorb sound and create diffraction at their bound-
aries. The diffraction pattern is only a rough approximation.

Attributes of element obstacle, inheriting from objects routes

name description (type, unit) def.
aperture Override aperture of airy disk calculation, zero for calculation from area (float, m) 0
importraw file name of vertex list (string)

TASCAR – User manual 0.233.2.4-2e1f3e1

56 CONTENTS

ishole Simulate infinite plane with hole instead of finite surface (bool) false
transmission transmission coefficient (float) 0

An example configuration file can be found in the file example_obstacle.tsc. For an
exact definition of the frequency response, see Equation 10 in Grimm et al. (2019). The
aperture is a = 2

√
A/π, e.g., in case of an obstacle of 1 times 1 meter the aperture is

1.1284 meter.

63 125 250 500 1000 2000
-1

-0.5

0

0.5

1

frequency / Hz

o
b

s
ta

c
le

 c
e

n
te

r
/

m

obstacle

-40

-30

-20

-10

0

63 125 250 500 1000 2000
-1

-0.5

0

0.5

1

frequency / Hz

o
b

s
ta

c
le

 c
e

n
te

r
/

m

hole

-40

-30

-20

-10

0

Figure 10: Frequency attenuation of a limited obstacle (left) and a hole (right) of 1 square
meter, as a function of obstacle distance.

5.11 Masks: <mask ../> element

Global masks affect the attenuation in a receiver, based on the receiver position. See Figure
11.

Attributes of element mask, inheriting from objects routes

name description (type, unit) def.
falloff ramp length at boundaries (double, m) 1
inside mask inner objects (bool) false
size dimension of mask (pos, m) 0 0 0

0.233.2.4-2e1f3e1 TASCAR – User manual

5.11 Masks: <mask ../> element 57

Figure 11: Global masks example.

TASCAR – User manual 0.233.2.4-2e1f3e1

58 CONTENTS

6 General purpose modules

External modules which do not directly interact with the acoustic model of the virtual acoustic
environment can be loaded as dynamic libraries. These modules may analyse or modify the
session data, or simply provide some additional functionality. Modules can be added to a
session file within the modules, e.g.,

<modules>
<simplecontroller actor="/*/out" ... />

</modules>

List of general purpose modules:

• datalogging

• dirgain

• echoc

• glabsensors

• granularsynth

• hoafdnrot

• hossustain

• hrirconv

• jackrec

• levels2osc

• lightctl

• lsl2osc

• lsljacktime

• ltcgen

• matrix

• midicc2osc

• midictl

• mididispatch

• osc2lsl

• osceog

0.233.2.4-2e1f3e1 TASCAR – User manual

6.1 datalogging 59

• oscevents

• oscjacktime

• oscrelay

• oscserver

• route

• sampler

• savegains

• sleep

• system

• systime

• timedisplay

• touchosc

• transportgui

• waitforjackport

• waitforlslstream

6.1 datalogging

The data logging module allows logging OSC messages and LSL data streams together with
the timeline of TASCAR. Application examples are external sensors such as motion capture
or bio-physical sensors such as EEG, but also control data, e.g., send from measurement
applications.

Example:
<datalogging port="9998" multicast="" fileformat="matcell" outputdir="${HOME}">

<osc path="/sensor1/pos" size="3"/>
<osc path="/sensor1/rot" size="3"/>
<osc path="/sensor3" size="4"/>
<oscs path="/msg"/>
<lsl predicate="name=’EEGamp’"/>

</datalogging>

To record the data sent by a device as a series of OSC messages, the message path path

and dimension size must be specified:
<osc path="/sensor1/pos" size="3"/>

TASCAR – User manual 0.233.2.4-2e1f3e1

60 CONTENTS

The ignorefirst attribute can be used to hide the first channel in the display, which can be
useful if the first channel contains time values or other control data. This will not affect the
recording of the data.

To record the data sent by a device as an LSL stream, the LSL stream must be selected.
This is done via the attribute predicate :

<lsl predicate="name=’EEGamp’" tctimeout="2"/>

The tctimeout attribute is the maximum time used to measure the time correction values
between sender and receiver. The required attribute can be set to “false” to allow TASCAR
to start without requiring all LSL streams to be available. The stream will then not be restored
later during the session.

Text data (e.g., trigger messages) can be recorded from LSL, or from osc with the <oscs/>
element:

<oscs path="/msg"/>

Attributes of element datalogging

name description (type, unit) def.
controltransport Control transport with recording session control (bool) true
displaydc Display DC components (bool) true
fileformat File format, can be either “mat”, “matcell” or “txt” (string) matcell
headless Use without GUI (bool) false
lsltimeout Number of seconds to scan for LSL streams (double, s) 10
multicast OSC multicasting address (string)
outputdir Data output directory (string)
port OSC port, or empty to use session server (string)
srv_proto Server protocol, UDP or TCP (string) UDP
usetransport Record only while transport is rolling (bool) false

Attributes of element osc

name description (type, unit) def.
ignorefirst Ignore first value in visualization. (bool) false
path OSC path name, expecting messages with ’d’ format (usedouble=true) or ’f’ format.

(string)
size Numer of double/float values per sample. (uint32) 1
usedouble Use double precision OSC variable instead of single precision. (bool) true

Attributes of element oscs

name description (type, unit) def.
path OSC path name, expecting messages with ’s’ format (string)

0.233.2.4-2e1f3e1 TASCAR – User manual

6.1 datalogging 61

Attributes of element lsl

name description (type, unit) def.
predicate LSL stream resolving predicate, e.g., "name=’EEG’" (string)
required Require this stream. If true, then loading will fail if stream is not available. (bool) true
tctimeout Time correction timeout (double, s) 2

The window size and position of the datalogging GUI can be controlled with the attributes x ,
y , w and h . Within the GUI, continuous data arrival is indicated with a green dot for each
variable.

Depending on the content of the fileformat variable, the storage format differs: In the mat
file format, each variable is stored as a matrix under the variable name. This means that
it is not possible to record two streams with the same variable name. To work around this
problem, the matcell file format can be used. Here the data is stored in a cell array, with
one entry for each variable. Each entry contains a structure, with a name field, a data field
and for LSL variables some additional stream information.

OSC control

Data recording can be started and stopped via OSC messages by sending a message
to /session_start and /session_end respectively. The trial ID can be set via
/session_trialid; a new trial ID will be used at the next /session_start event.

The output directory can be set with /session_outputdir. This is possible up to the
/session_stop event.

OSC variables:

path fmt. range r. description
/session_outputdir s string yes Set the output directory
/session_start no Start the recording of a session
/session_stop no Stop the recording of a session and save data to the file
/session_trialid s string no Set the new trial ID

Timeline control and data logging

With the default settings the datalogging will start the timeline transport from zero upon
/session_start, and will stop the transport upon /session_stop. This can be changed
by setting the attribute controltransport="false" . In that case the transport will not be
started or stopped upon any /session_start or /session_stop event.

To record data only while the transport is rolling, the attribute usetransport="true" can be
used.

TASCAR – User manual 0.233.2.4-2e1f3e1

62 CONTENTS

Data logging, session time and lab streaming layer

The data logging can record two types of streams: OSC based floating point val-
ues (<osc/>), and LSL based floating point streams (<lsl/>). For OSC mes-
sages, the first row of the data matrix contains the session time tsession at which
the data packet arrived. The underlying function from the jack audio connection kit,
jack_get_current_transport_frame, is used to get a high resolution estimate of the
current session time. For LSL streams, the situation is more complex, since LSL provides an
own method of time stamping. Here, the second row in the data matrix contains the original
LSL time stamps of the remote sender, tlsl,remote. Since the data is processed in chunks, it is
not possible to use the arrival time as a session time stamp. Instead, the clock difference be-
tween the local LSL clock and the remote LSL clock ∆stream is measured at the beginning and
also at the end of each recording session, using the LSL function lsl_time_correction,
i.e., the local LSL clock minus the remote clock, ∆stream = tlsl,local − tlsl,remote. Additionally,
upon each update of the local session time, i.e., upon each processing cycle, the difference
between the session time and the local LSL time, ∆session = tsession − tlsl,local is measured.
The combination of ∆session and ∆stream is used to convert remote LSL time stamps into
session time stamps: the estimated session time at time of sending the sample, t̃session is

t̃session = tlsl,remote +∆stream +∆session (6)

∆stream is the value which was measured at the beginning of a recording session. t̃session is
the time stamp which is stored in the first row of the LSL data matrix.

Clock drift may occur between clocks. The drift between the local LSL clock tlsl,local and
the audio clock (basis of tsession) is continuously compensated by the measures of ∆session.
The drift between the local LSL time tlsl,local and the remote LSL time tlsl,remote can be com-
pensated offline by taking the difference between ∆stream at the beginning and the end of a
recording session, which are both stored in the datalogging file for each LSL stream. Thus
the drift-compensated estimated session time t̂session is

t̂session = t̃session +
tlsl,local − tlsl,local,start

tlsl,local,end − tlsl,local,start
(∆stream,end −∆stream,start). (7)

Some sensors (e.g., the ESP-based IMU/EOG sensor of the Gesture lab in University of
Oldenburg), synchronize the sensor clock with the (remote) LSL clock only upon initial-
ization. This causes the problem, that the clock drift reported by ∆stream is not related
to the clock drift between the sensor and the session time. To overcome this problem,
the <espheadtracker/> glabsensor submodule (see section 6.4) sends a local difference
∆sensor = tlsl,remote − tsensor as an LSL stream. This data contains drift as well as jitter caused
by the WiFi transmission. The sensor drift can be estimated by a linear fit to this data. The
linear fit of ∆sensor needs to be added to t̂session of the data of the LSL streams corresponding
to this sensor.

6.2 dirgain

The dirgain module optionally applies channel direction dependent low-pass filtering (i.e.,
directional filtering) to signals. Typical application is to apply beamformer/cardioid simulation
on a regular circular loudspeaker system.

0.233.2.4-2e1f3e1 TASCAR – User manual

6.3 echoc 63

Attributes:
id Plugin ID, used in jack name and OSC path
channels Number of channels (default: 1)
az Steering azimuth in degrees (default: 0)
az0 Azimuth of first channel (default: 0)
f6db Frequency in Hz, at which a 6 dB attenuation at 90 degrees is

achieved (default: 1000)
fmin Low-end limit for stabilization (default: 60)
active Boolean to control start-up activity (default: true)

All variables except for id and channels can be controlled via OSC.

6.3 echoc

The echoc module provides echo cancellation. As a non-adaptive method, it operates in two
phases: In the measurement phase, a test signal is played back through the speaker outputs
loudspeakerports and the response is recorded through the microphone inputs micports .
In the filter phase, the output signals are filtered with the phase-inverted corresponding re-
sponses, and the signal is added to the microphone signal. An overview of the signal flow is
given in the figure 12.

Please note that no feedback jack connections are possible for the echo cancellation to work,
because feedback connections cause an additional delay which results in a mismatch of the
cancellation signal. This also means that a graph from the microphone to the loudspeaker
(e.g., self monitoring) is not possible for the echo cancellation to work. Future versions may
compensate for this extra delay.

The filter is implemented in frequency domain as overlap-save algorithm.

Attributes of element echoc

name description (type, unit) def.
autoreconnect Automatically re-connect ports after jack port change

(bool)
false

bypass Bypass filter stage (bool) false
filterlen Minimal length of filters (uint32, samples) 65
level Playback level (float, dB SPL) 70
loudspeakerports Loudspeaker ports (string array) system:playback_1 system:playback_2

maxdist Maximum distance between microphone and loud-
speaker (float, m)

2

measureatstart Perform a measurement when the plugin is loaded
(bool)

false

micports Microphone ports (string array) system:capture_1
name Client name, used for jack and IR file name (string) echoc
nrep Number of measurement repetitions (uint32) 16
premax Time before to maximum to add to filter (uint32, sam-

ples)
8

TASCAR – User manual 0.233.2.4-2e1f3e1

64 CONTENTS

feedback path

filter

measurement

microphone
A/D conv.

IR-
measurement

D/A conv.
loudspeaker

 H

+

other
clients

delay

test
signal

sound
source

filter
-H'

estimator
H'

Figure 12: Signal flow of the echoc plugin. The sound source (left side) is played back
through the loudspeakers. In the signal sent to the other clients (on the right side), the sound
source is cancelled. The adaptive filter estimator (gray box) is not yet implemented.

6.4 glabsensors

The module glabsensors provides an interface to error reporting in sensor drivers, and it can
load drivers for various sensors.

Attributes of element glabsensors

name description (type, unit) def.
ontop Keep window on top of other windows (bool) true
url_critical OSC URL to send critical messages to (string)
url_warning OSC URL to send warning messages to (string)
x Screen x position (uint32, px) 0
y Screen y position (uint32, px) 0
w Window width (uint32, px) 320
h Window height (uint32, px) 1080

The trackir sensor (optical marker tracking) supports these attributes:

0.233.2.4-2e1f3e1 TASCAR – User manual

6.4 glabsensors 65

Attributes:
name Sensor name (default: “trackir”)
linethreshold Maximal deviation from line (default: 1)
maxdist Maximal distance error of marker 2D projection (default: 0.05)
margin Warning margin in pixels (default: 100)
use_calib Use camera calibration (default: true)
flipx Flip x coordinate, required for some TrackIR models

(default: false)
flipy Flip y coordinate, required for some TrackIR models

(default: false)
f Focal length of camera (default: 640)
maxframedist Maximal distance between consecutive frames for warnings

(default: 0.05)
camcalibfile Name of camera calibration file

(default: “${HOME}/tascartrackircamcalib.txt”)
crownfile Name of camera calibration file

(default: “${HOME}/tascartrackircrown.txt”)
camview Draw camera view (default: true)

The module provides three LSL streams: trackir contains 6 channels (translation
xyz, rotation zyx) as provided by the underlying openCV camera solving algorithm.
trackirpresolve contains also 6 channels with translation and rotation, but based on
the 2-dimensional projection. The rotation around x and y will always be zero. This esti-
mation might be more robust than the camera solving algorithm based estimation in some
conditions. trackirmarker contains 30 channels, with the camera position (x,y) and pixel
size of up to 10 markers. Untracked markers contain a pixel size of 0.

Camera calibration can be provided in a simple text file. White space will be ignored, com-
ments are allowed after the ’#’ comment character. The filed must contain six numbers:
Camera position (x,y,z) and camera Euler orientation (z,y,x). If camera calibration is pro-
vided in an external file and locally in the XML configuration, then the data from the external
file is used.

The eog sensor is a bluetooth serial stream based device, with these attributes:

Attributes:
device Serial device (default: “/dev/rfcomm1”)
baudrate Baud rate (default: 38400)
charsize Character size (default: 8)
offset Data offset (default: 512)
scale Data scale (default: 0.0032227)
range Data range (default: “0 1023”)
unit Data unit (default: mV)

The LSL output stream contains one channel.

The midicc sensor receives MIDI CC messages:

TASCAR – User manual 0.233.2.4-2e1f3e1

66 CONTENTS

Attributes:
connect Connect input to this MIDI port
range Value range mapping, input values of 0 are mapped to the first

element, input values of 127 are mapped to the second, with
linear interpolation (“0 1”)

controllers Channel/Parameter pairs of controllers to receive
data Start values sent to device upon initialization

The serial sensor reads data from the serial device, with these attributes:

Attributes:
device Serial device (default: “/dev/ttyS0”)
baudrate Baud rate (default: 38400)
charsize Character size (default: 8)
offset Data offset (default: 0)
scale Data scale (default: 1)
channels Number of channels (default: 1)

The LSL output stream contains one channel.

The emergency sensor reacts on continuous OSC messages on path /noemergency, and
executes a command when no OSC message arrives within a given timeout.

Attributes of element emergency

name description (type, unit) def.
alivetimeout Timeout after which the sensor is seen as not alive (double, s) 1
name Module name (string) emergency
on_alive Command to be executed when sensor is alive again (string)
on_timeout Command to be executed on timeout (string)
path OSC path on which messages are arriving (string) /noemergency
startlock Lock detecting at start for this amount of time (double, s) 5
timeout Timeout after which an emergency is detected (double, s) 1

OSC variables:

path fmt. range r. description
/noemergency f no

For the custom-made ESP-based combined head tracking and EOG amplifier of the Ges-
ture Lab, the module espheadtracker was developed. This module requires a session port
number of 9800 to work, since the port number is hard-coded into the firmware of the sensor.

Attributes:
timeout Time out for re-connection/re-initialization of LSL stream in sec-

onds

0.233.2.4-2e1f3e1 TASCAR – User manual

6.5 granularsynth 67

The jackstatus sensor analyses the JACK backend performance (xruns and CPU load).
Warnings are issued if xruns occur or if the CPU load is above the given threshold. Critical
errors are issued when the average xrun frequency is above the given threshold, or if the
CPU load is above the threshold.

Attributes:
warnload CPU load threshold for warnings, in percent (default: 70)
criticalload CPU load threshold for critical errors, in percent (default: 95)
maxxrunfreq Critical average xrun frequency threshold in Hz (default: 0.1)
oncritical Shell command to be executed when critical state is reached

The qualisys is an interface between the OSC interface of the commercial QTM software
by Qualisys and TASCAR. It creates an LSL stream and optional OSC output for each rigid
object tracked by QTM. The attributes are:

name description (type, unit) def.
dataprefix OSC path prefix, will be followed by slash + rigid names (string)
dataurl OSC URL where data is sent to (or empty for no OSC sending) (string)
qtmurl Qualisys Track Manager URL of USC interface (string) osc.udp://localhost:22225/

timeout Timeout (double, s) 1
uselsl Create LSL output stream (bool) true

The smiley sensor is used for testing and learning only. It has no configurable attributes.

6.5 granularsynth

Granular synthesis

Attributes of element granularsynth

name description (type, unit) def.
active active (bool) true
bpm Tempo (double, bpm) 120
bypass bypass (bool) false
durations Durations (double array, beats)
f0 frequency of pitch 0 (double, Hz) 415
gain Gain (double, dB) 0
id ID used in jack name and OSC path (string) granularsynth
loop Time when to loop (double, beats) 64
numgrains Number of grains to keep (uint32) 100
pitches Pitch numbers (double array, semitones)
ponset Onset playback probabbility (double) 1
prefix prefix used in OSC path (string) /c/
psustain Sustained sound probability (double) 0
t0 Melody start time (double, s) 0
wet Mixing gain (float) 1

TASCAR – User manual 0.233.2.4-2e1f3e1

68 CONTENTS

wlen window length (uint32, samples) 8192

These parameters can be controlled interactively:

OSC variables:

path fmt. range r. description
/.../active i bool yes
/.../bypass i bool yes
/.../gain f [-40,10] yes
/.../oscactive i bool yes
/.../ponset f yes
/.../psustain f yes
/.../reset no
/.../t0 f yes
/.../wetapply f no
/.../wet f yes

6.6 hoafdnrot

A higher-order-ambisonics feedback delay network (FDN) with rotation line-filters, and circu-
lant feedback matrix design after Rocchesso and Smith (1997).

Attributes of element hoafdnrot

name description (type, unit) def.
id Jack / OSC id (string) fdn
amborder Ambisonics order (uint32) 3
fdnorder FDN order (uint32) 5
w Rotation velocity in rounds per second (double, rps) 1
dw Angular spread (double, rps) 0.1
t Average delay line length (double, s) 0.01
dt Delay line spread (double, s) 0.002
decay Decay time (double, s) 1
damping Damping coefficient (double) 0.3
dry Dry signal ratio (double) 0
wet Wet signal ratio (double) 1
prefilt Use pre-filters (bool) false
logdelays Use logarithmic delay distribution between dt and t (bool) false

Real-time parameters can be remote-controlled with the OSC variables /id/par, accepting
six floats (w, dw, t, dt, decay, damping), and the variable /id/dry with one float, to control
the dry signal ratio.

6.7 hossustain

Cluster generator by moving spectral averaging with random phase.

0.233.2.4-2e1f3e1 TASCAR – User manual

6.8 hrirconv 69

Attributes of element hossustain

name description (type, unit) def.
bass Linear gain of subsonic component (float) 0
bassratio Frequency ratio of subsonic component (float) 2
delayenvelope Delay envelope to match processed signal (bool) false
fcut Low-cut edge frequency (float, Hz) 40
gain Gain (double, dB) 0
id ID used for jack and OSC (string) sustain
tau_envelope Envelope tracking time constant (float, s) 1
tau_sustain Clustering time constant (float, s) 20
wet Wet-dry ratio (float) 1
wlen Window length (uint32, samples) 8192

6.8 hrirconv

The module hrirconv is intended for convolution of multi-channel loudspeaker signals with
head related impulse responses (HRIR), to generate signals for binaural listening or hearing
aid processing. To activate the module, add
<hrirconv>

...
</hrirconv>

to your session configuration.

Attributes:
id Name used for jack
fftlen FFT length (need to be longer than jack fragment size)
inchannels Number of input channels
outchannels Number of output channels
autoconnect Auto-connect input to all receivers with matching channel count

(true|false)
connect Input port connections (port name globbing possible)
hrirfile file name of HRIR file, channel order i1o1,i1o2,i1o3,...,i2o1,...

The convolution matrix can be defined with the <entry/> element. Each entry defines a
convolution with an impulse response; typically a convolution for each combination of input
channel and output channel is defined. The recognized attributes of <entry/> are:

Attributes:
in Input channel number (zero-based)
out Output channel number (zero-based)
file File name of impulse response
channel File channel of impulse response (zero-based)

TASCAR – User manual 0.233.2.4-2e1f3e1

70 CONTENTS

A typical configuration for binaural listening can look like this:
1 <?xml version="1.0"?>
2 <session name="hrir" license="CC BY-SA 3.0" attribution="Giso Grimm">
3 <scene name="test">
4 <receiver name="out" type="vbap" layout="8ch.spk"/>
5 <!-- ... -->
6 </scene>
7 <modules>
8 <hrirconv inchannels="8" outchannels="2" autoconnect="true">
9 <entry in="0" out="0" file="hrir_000.wav" channel="0"/>

10 <entry in="0" out="1" file="hrir_000.wav" channel="1"/>
11 <entry in="1" out="0" file="hrir_045.wav" channel="0"/>
12 <entry in="1" out="1" file="hrir_045.wav" channel="1"/>
13 <entry in="2" out="0" file="hrir_090.wav" channel="0"/>
14 <entry in="2" out="1" file="hrir_090.wav" channel="1"/>
15 <entry in="3" out="0" file="hrir_135.wav" channel="0"/>
16 <entry in="3" out="1" file="hrir_135.wav" channel="1"/>
17 <entry in="4" out="0" file="hrir_180.wav" channel="0"/>
18 <entry in="4" out="1" file="hrir_180.wav" channel="1"/>
19 <entry in="5" out="0" file="hrir_225.wav" channel="0"/>
20 <entry in="5" out="1" file="hrir_225.wav" channel="1"/>
21 <entry in="6" out="0" file="hrir_270.wav" channel="0"/>
22 <entry in="6" out="1" file="hrir_270.wav" channel="1"/>
23 <entry in="7" out="0" file="hrir_315.wav" channel="0"/>
24 <entry in="7" out="1" file="hrir_315.wav" channel="1"/>
25 </hrirconv>
26 </modules>
27 <connect src="hrirconv:out_0" dest="system:playback_1"/>
28 <connect src="hrirconv:out_1" dest="system:playback_2"/>
29 </session>

Example 13: examples/example_hrirconv.tsc

A configuration file for binaural convolution together with a binaural head model HRIR set
(Duda, 1993) can be created with the Matlab/GNU Octave script “tascar_hrir_duda.m” (in
/usr/share/tascar/matlab). See documentation of the script for details.

6.9 jackrec

OSC controlled audio recorder

List of configuration variables:

Attributes of element jackrec

name description (type, unit) def.
name Name used for OSC prefix and jack (string) jackrec
buflen audio buffer length (double, s) 10
url URL of OSC controller interface (string)
path File path where to store and search for files (string)
pattern search pattern (string) rec*.wav
fileformat File format (string, WAV AIFF AU RAW PAF SVX NIST VOC IRCAM W64

MAT4 MAT5 PVF XI HTK SDS AVR WAVEX SD2 FLAC CAF WVE OGG
MPC2K RF64)

WAV

0.233.2.4-2e1f3e1 TASCAR – User manual

6.9 jackrec 71

sampleformat Audio sample format (string, PCM_S8 PCM_16 PCM_24 PCM_32
PCM_U8 FLOAT DOUBLE ULAW ALAW IMA_ADPCM MS_ADPCM
GSM610 VOX_ADPCM G721_32 G723_24 G723_40 DWVW_12 DWVW_16
DWVW_24 DWVW_N DPCM_8 DPCM_16 VORBIS)

PCM_16

prefix file prefix (string) rec
usetransport Record only when transport is rolling (bool) false
ports List of ports to record (string array)

Here is an example of the communication protocol:

TASCAR response control client request
/jackrec/ready

/jackrec/listports
/jackrec/portlist
/jackrec/port system:capture_1
/jackrec/port system:capture_2
/jackrec/port render.scene:out_l
. . .

/jackrec/addport system:capture_1
/jackrec/addport system:capture_2
. . .
/jackrec/start

/jackrec/rectime 0.18575963377952576
/jackrec/rectime 0.38603174686431885
/jackrec/rectime 0.5863038301467896
/jackrec/rectime 0.786575973033905
/jackrec/rectime 0.9868480563163757
. . .

/jackrec/stop
/jackrec/listfiles

/jackrec/file rec20201122_101133.wav
/jackrec/clear
/jackrec/start

/jackrec/error Failure: No sources selected.
/jackrec/addport system:capture_1
/jackrec/tag _id1234_
/jackrec/start

/jackrec/rectime 0.18575963377952576
/jackrec/rectime 0.38603174686431885
/jackrec/rectime 0.5863038301467896
/jackrec/rectime 0.786575973033905
/jackrec/rectime 0.9868480563163757
. . .

/jackrec/stop
/jackrec/listfiles

/jackrec/file rec20201122_101133.wav
/jackrec/file rec_id1234_20201122_101633.wav

TASCAR – User manual 0.233.2.4-2e1f3e1

72 CONTENTS

File formats:

WAV AIFF AU RAW PAF SVX NIST VOC IRCAM W64 MAT4 MAT5
PVF XI HTK SDS AVR WAVEX SD2 FLAC CAF WVE OGG MPC2K RF64

Sample formats:

PCM_S8 PCM_16 PCM_24 PCM_32 PCM_U8
FLOAT DOUBLE
ULAW ALAW
IMA_ADPCM MS_ADPCM
GSM610 VOX_ADPCM G721_32 G723_24 G723_40
DWVW_12 DWVW_16 DWVW_24 DWVW_N DPCM_8 DPCM_16
VORBIS

6.10 levels2osc

Attributes:
pattern Source port names
noisepattern Source port names for noise signals, to calculate SNR
url Target OSC URL
ttl Time to live of OSC multicast messages

This module reads the level meters of the specified ports and sends their values as OSC data
and LSL streams. If pattern and noisepattern match the same number of ports and each
port has the same number of audio channels, then the SNR is calculated and transmitted
instead of levels. A potential application is data logging of levels or SNRs.

6.11 lightctl

The module has these attributes:

name description (type, unit) def.
fps Frames per second (double, Hz) 30
universe DMX universe (uint32) 0
driver Driver name (string, “artnetdmx”, “opendmxusb”, or “osc”)
hue_warp_rot Hue warping rotation (double, deg) 0
hue_warp_x Hue warping x offset (double) 0
hue_warp_y Hue warping y offset (double) 0
rawsrvchannels Number of channels to receive as RAW DMX (uint32) 0
rawsrvhost multicast address for raw DX OSC server (string)
rawsrvpath Path for raw DMX OSC server, empty for no raw DMX OSC server (string)
rawsrvport Port of raw DMX OSC server, or empty to use session OSC server (string)

0.233.2.4-2e1f3e1 TASCAR – User manual

6.11 lightctl 73

rawsrvproto Protocol of raw DMX OSC server (string) UDP

Additional attributes of “artnetdmx” driver:

name description (type, unit) def.
hostname Hostname of ArtnetDMX receiver (string) localhost
port Port number of ArtnetDMX receiver (uint32) 6454

Additional attributes of “opendmxusb” driver

name description (type, unit) def.
device Device name /dev/ttyUSB0

Additional attributes of “osc” driver

name description (type, unit) def.
hostname Hostname of OSC destination (string) localhost
port Port number of OSC destination (uint32) 9000
path Destination path (string) /dmx
maxchannels Maximum number of channels to transmit (uint32) 512

One or more <lightscene/> elements can be defined, with these attributes:

Attributes of element lightscene

name description (type, unit) def.
channels Number of DMX channels per fixture (uint32) 3
layout name of speaker layout file (string)
master undocumented (float) 1
method undocumented (string)
mixmax undocumented (bool) false
name Scene name (string) lightscene
objects Pattern of objects to track (string array)
objval DMX value of objects (float array)
objw weight of objects (float array)
parent Name of parent object for relative position measurement (string)
sendsquared Send squared values for smoother intensity fades (bool) false
usecalib Use calibrated values instead of raw values (bool) true

Fixtures are defined using the fixture element within the fixtures element. Syntax is the
same as for speaker layout definitions, with these additional attributes for each element:

Attributes of element fixture

name description (type, unit) def.
addr start address (uint32) 1
az Azimuth (double, deg) 0

TASCAR – User manual 0.233.2.4-2e1f3e1

74 CONTENTS

el Elevation (double, deg) 0
label fixture label (string)
dmxval start DMX value (int32 array)

For each fixture, sub-elements in the form <calib channel="0" in="255" out="127"/> can
be provided, to calibrate the input-output function of the lamps. The attributes in needs to
be larger than zero, the attributes channel and out need to be larger or equal to zero. In-
stead of linear DMX values these can be squared (DMXo = 255 ceil(DMXi/255)

2), to achieve
constant intensity light.

Calibration tools for MATLAB/GNU Octave are available in tascar_fixtures_calib.m.
See source code repository for more examples.

6.12 lsl2osc

Convert LSL streams into OSC messages. Each variable will contain the LSL time stamp in
the first entry, followed by all stream channels. This means that if the LSL stream contains
N channels, then the OSC variable will contain N +1 double entries. Only LSL streams with
32 or 64 Bit floating point data are supported. Both types will be forwarded as 64 Bit floating
points.

Attributes of element lsl2osc

name description (type, unit) def.
prefix OSC path prefix, "/" + name will be appended. (string) /lsl2osc
streams List of stream names to transmit (string array)
url OSC target URL, or empty to dispatch locally. (string)

6.13 lsljacktime

This module sends the current jack time as an LSL stream of the name “TASCARtime”.

Example:
<lsljacktime sendwhilestopped="false"/>

6.14 ltcgen

A Linear Time Code (LTC) generator module encodes either session time or wall clock time
into LTC code, such as for synchronizing cameras. A jack port is provided through which the
signal is transmitted.

Attributes of element ltcgen

0.233.2.4-2e1f3e1 TASCAR – User manual

6.15 matrix 75

name description (type, unit) def.
addtime Add time, e.g., for time zone compensation (double, s) 0
connect Space-separated list of output port connections (string array)
fpsden Frames per second, denominator (double) 1
fpsnum Frames per second, numerator (double) 25
usewallclock Use wallclock time instead of session time (bool) false
volume Signal volume (double, dB re FS) -18

6.15 matrix

Create a jack based matrix multiplication, e.g., for Ambisonics decoding.

Attributes:
id Jack identifier
decoder Empty (for explicit matrix), or maxre2d (for mode-matching 2D-

HOA max-rE decoding)

Outputs are defined as in speaker based layout files, except that they use the element
<output/> . In addition, each speaker can contain the attribute m , which contains a list
of floating point values. Each output channel is the sum of the product of m with the corre-
sponding input channel.

Inputs are defined by the sub-elements <input/> . Each input can have the attribute
connect .

An Ambisonics decoder configuration can be created with the MATLAB/GNU Octave script
tacsar_generatedecmatrix.m.

Example:
<matrix id="dec" decoder="maxre2d">

<input connect="hoa:out.0" label=".0_0"/>
<input connect="hoa:out.1" label=".1_-1"/>
<input connect="hoa:out.2" label=".1_1"/>
<input connect="hoa:out.3" label=".2_-2"/>
<input connect="hoa:out.4" label=".2_2"/>
<input connect="hoa:out.5" label=".3_-3"/>
<input connect="hoa:out.6" label=".3_3"/>
<input connect="hoa:out.7" label=".4_-4"/>
<input connect="hoa:out.8" label=".4_4"/>
<input connect="hoa:out.9" label=".5_-5"/>
<input connect="hoa:out.10" label=".5_5"/>
<input connect="hoa:out.11" label=".6_-6"/>
<input connect="hoa:out.12" label=".6_6"/>
<output az="12" connect="render.tostereo:in.0"/>
<output az="36" connect="render.tostereo:in.1"/>
<output az="60" connect="render.tostereo:in.2"/>
<output az="84" connect="render.tostereo:in.3"/>
<output az="108" connect="render.tostereo:in.4"/>
<output az="132" connect="render.tostereo:in.5"/>
<output az="156" connect="render.tostereo:in.6"/>
<output az="180" connect="render.tostereo:in.7"/>

TASCAR – User manual 0.233.2.4-2e1f3e1

76 CONTENTS

<output az="204" connect="render.tostereo:in.8"/>
<output az="228" connect="render.tostereo:in.9"/>
<output az="252" connect="render.tostereo:in.10"/>
<output az="276" connect="render.tostereo:in.11"/>
<output az="300" connect="render.tostereo:in.12"/>
<output az="324" connect="render.tostereo:in.13"/>
<output az="348" connect="render.tostereo:in.14"/>

</matrix>

An example with explicit matrix element definitions:

<matrix id="mix_out">
<input label="proc1_l" connect="adm1:out_1"/>
<input label="proc1_r" connect="adm1:out_2"/>
<input label="proc2_l" connect="adm2:out_1"/>
<input label="proc2_r" connect="adm2:out_2"/>
<output label="S_out_l" m="0.5 0 0.5 0"/>
<output label="S_out_r" m="0 0.5 0 0.5"/>
<output label="N_out_l" m="-0.5 0 0.5 0"/>
<output label="N_out_r" m="0 -0.5 0 0.5"/>

</matrix>

6.16 midicc2osc

Convert MIDI CC events from ALSA devices into OSC messages.

Attributes of element midicc2osc

name description (type, unit) def.
connect name of input ALSA MIDI source (string)
controllers List of controllers, in “channel/param” form (e.g., 0/13 0/28) (string ar-

ray)
dumpmsg Dump unprocessed messages to console (bool) false
max maximum output value (corresponding to MIDI 127) (double) 1
min minimum output value (corresponding to MIDI 0) (double) 0
name name of MIDI client (string)
path OSC path (string) /midicc
url OSC destination URL (string) osc.udp://localhost:7777/

6.17 midictl

Control gains with a MIDI controller.

0.233.2.4-2e1f3e1 TASCAR – User manual

6.18 mididispatch 77

Attributes:
pattern Pattern to select gain controllers in TASCAR.
dumpmsg Dump unprocessed messages to console
name name of MIDI client
connect name of MIDI device
controllers List of controllers, in “channel/param” form (e.g., 0/13 0/28)
min minimum output value (corresponding to MIDI 0)
max maximum output value (corresponding to MIDI 127)

Here is an example which selects the gain controller of the sound “in.0”, the receiver gain
“out” (both in the scene “scene”) and the gain controller of the “route” module “/test”:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <session license="CC0">
3 <scene name="scene">
4 <source name="in">
5 <sound name="0"/>
6 </source>
7 <receiver name="out"/>
8 </scene>
9 <modules>

10 <midictl name="master" min="-30" max="0" controllers="0/0 0/1 0/2 0/8 0/9
0/10" dumpmsg="true" connect="BCF2000:0" pattern="/scene/in/0 /scene/out
/test"/>

11 <route name="test" channels="2"/>
12 </modules>
13 </session>

Example 14: examples/example_midictl.tsc

6.18 mididispatch

This plugins can dispatch OSC messages upon MIDI events (CC or note events). Event
handlers can be registered via OSC or in the XML configuration, using the <ccmsg/> or
<notemsg/> elements. Multiple event handlers for the same event can be registered. In
that case all event handlers will be called. Event handler can be removed via OSC. The
communication is bi-directional; MIDI events can be emitted by sending an OSC message to
/mididispatch/send/cc or /mididispatch/send/note.

Attributes of element mididispatch

name description (type, unit) def.
connect ALSA device name to connect to (string)
copyccpath OSC path for copied CC events (string) /cc
copynotepath OSC path for copied note events (string) /note
copyurl OSC URL to copy outgoing MIDI messages to. (string)
dumpmsg Dump all unrecognized messages to console (bool) true
name ALSA MIDI name (string) mididispatch
oscinput Create additional OSC inputs (bool) false

TASCAR – User manual 0.233.2.4-2e1f3e1

78 CONTENTS

Attributes of element ccmsg

name description (type, unit) def.
channel MIDI channel (uint32) 0
param MIDI CC parameter (uint32) 0
mode message mode, float|trigger (string) trigger
path OSC path (string)
min lower bound (float) 0
max upper bound (float) 127

Attributes of element notemsg

name description (type, unit) def.
channel MIDI channel (uint32) 0
note MIDI note (uint32) 0
mode message mode, float|trigger (string) trigger
path OSC path (string)
min lower bound (float) 0
max upper bound (float) 127

OSC variables:

path fmt. range r. description
/.../add/cc/float iisff no
/.../add/cc/float iisffs no
/.../add/cc/trigger iisii no
/.../add/cc/trigger iisiis no
/.../add/note/float iisff no
/.../add/note/float iisffs no
/.../add/note/trigger iisii no
/.../add/note/trigger iisiis no
/.../clear/launchpadaction no
/.../del/cc/all no
/.../del/cc ii no
/.../del/launchpadaction i no
/.../del/note/all no
/.../del/note ii no
/.../select/launchpadaction s no
/.../send/cc iii no
/.../send/note iii no

6.19 osc2lsl

Convert OSC messages into an LSL stream.

Attributes of element osc2lsl

name description (type, unit) def.
first_row_is_timestamp Use data of first row as LSL time stamp (bool) false
lslname LSL name (string) osc2lsl

0.233.2.4-2e1f3e1 TASCAR – User manual

6.20 osceog 79

lsltype LSL type (string) osc2lsl
path OSC path name (string) /osc2lsl
retval OSC return value: 0 = handle messages also locally, non-0 =

mark message as handled, do not handle locally (int32)
1

size Dimension of variable (uint32) 1
source_id LSL source ID (string) osc2lsl29

6.20 osceog

OSC based EOG sensor driver

Attributes of element osceog

name description (type, unit) def.
connectwlan connect to sensor to external WLAN (bool) false
eogpath OSC target path for EOG data, or empty for no EOG (string) /eog
name Prefix in OSC control variables (string) osceog
srate Sensor sampling rate (8, 16, 32, 64, 128, 250, 475, 860) (uint32, Hz) 128
targetip target IP address when using external WLAN (string)
wlanpass passphrase of external WLAN (string)
wlanssid SSID of external WLAN (string)

6.21 oscevents

Emit OSC events at given time instances.

Note: The interface will change in near future, thus it remains undocumented.

6.22 oscjacktime

This module sends the current jack time as OSC messages.

Attributes of element oscjacktime

name description (type, unit) def.
path Destination OSC path (string) /time
skip Skip this number of blocks between sending (uint32, blocks) 0
ttl Time-to-live of UDP messages (uint32) 1
url Destination URL (string) osc.udp://localhost:9999/

Example:
<oscjacktime url="osc.udp://localhost:7000/" path="/time"/>

TASCAR – User manual 0.233.2.4-2e1f3e1

80 CONTENTS

6.23 oscrelay

Relay OSC messages, e.g., for distribution of motion sensors.

Attributes of element oscrelay

name description (type, unit) def.
newpath Replace incoming path with this path, or empty for no replacement

(string)
path Path filter, or empty to match any path (string)
retval Return value: 0 = handle messages also locally, non-0 = do not handle

locally (int32)
1

startswith Forward only messags which start with this path (string)
trimstart Trim startswith part of the path before forwarding (bool) false
url Target OSC URL (string) osc.udp://localhost:9000/

6.24 oscserver

Optional additional OSC server, e.g., for simultaneous access via TCP and UDP.

Attributes:
srv_addr OSC server address for multicasting (or empty for unicast)
srv_port OSC server port number (default: 9877)
srv_proto OSC transport protocol, “UDP” or “TCP” (default: “TCP”)

6.25 route

Create a jack bus with OSC controllable gain.

Attributes of element route

name description (type, unit) def.
caliblevel calibration level (float, dB SPL) 93.9794
caliblevel_in Input calibration levels (float array, dB SPL)
channels Number of channels (uint32) 1
connect Regular expressions of input port names (string array)
connect_out Regular expressions of output port names (string array)
gain Route gain (float, dB) 0
id Unique route id, empty to autogenerate (string)
inv phase invert (bool) false
levelmeter_tc Leq level metering time constant (double, s) 2
levelmeter_weight level meter weighting (f-weight) Z
lingain linear gain (float) 1
mute Mute flag of route (bool) false
name Jack and OSC identifier (string)
solo Solo flag of route (bool) false

0.233.2.4-2e1f3e1 TASCAR – User manual

6.26 sampler 81

The session OSC server is used for control.

6.26 sampler

Play audio samples via jack, triggered by OSC messages.

Attributes of element sampler

name description (type, unit) def.
multicast Multicast address (string)
port OSC port number (string) 9999

Sound files can be loaded with the sub-element <sound/> :

Attributes of element sound

name description (type, unit) def.
gain Gain to be applied (double, dB) 0
name File name of sound file (string)

6.27 savegains

This module can save the gains of all input and output ports into a plain text file, containing
OSC paths and dB values of the current gain. The file name is “savedgains” (with an optional
path prefix, see below). The save action can be triggered via an empty OSC message to the
OSC path /savegains/save. The same file can be restored by sending an empty OSC
message to the path /savegains/restore. To switch between different gain settings, the
file name can be changed remotely via OSC.

Attributes:
pattern Pattern of routes to be saved (default: “*”)
filename File name (default: “savedgains”)
path Path prefix of output file name

6.28 sleep

Block loading of additional modules for a given amount of time.

Attributes:
sleep Sleep time in seconds (default: 1)

TASCAR – User manual 0.233.2.4-2e1f3e1

82 CONTENTS

6.29 system

Start system processes, e.g., to load helper programs, external decoders or video render
tools.

Attributes of element system

name description (type, unit) def.
allowoscmod allow modifications of timed commands via OSC (bool) false
command command to be executed (string)
id undocumented (string) system
noshell do not use shell to spawn subprocess (bool) true
onunload command to be executed when unloading session (string)
relaunch relaunch process if ended before session unload (bool) false
relaunchwait Time to wait before relaunching subprocess (double, s) 0
sleep wait after starting the command before continuing to load session (double, s) 0
timedcmdpipe start timed commands using a pipe (true) or fork (false) (bool) true
timedprefix Prefix for timed commands added via OSC (string)
triggered command to be executed upon trigger signal (string)

If using a shell, on Unix systems the commands are started into the background using this
shell command line:

sh -c "cd sessionpath;command >/dev/null & echo \$!"

6.30 systime

Dispatch system time as OSC message to a local variable with 6 entries (year, month, day,
hour, minute, second).

Attributes of element systime

name description (type, unit) def.
path OSC path where time stamps (calendar) are dispatched (string) /systime
secpath OSC path where time stamps (seconds since midnight) are dispatched

(string)
/seconds

sendsessiontime Send session time in first data field (bool) true

6.31 timedisplay

Create a window with a time display.

Attributes of element timedisplay

name description (type, unit) def.
colbg background color (string, html color) #ffffff
colneg font color for negative times (string, html color) #cc1a1a

0.233.2.4-2e1f3e1 TASCAR – User manual

6.32 touchosc 83

colpos font color for positive times (string, html color) #000000
digits Number of decimals (uint32) 1
fontscale font scale (double) 1
fps Display update rate (not granted) (double, Hz) 10
prefix OSC variable prefix (string) /timedisplay
remaining show remaining time (bool) false
showtc Show time code (bool) false
threshold Change color to red if displayed time is below this value (double, s) 0
times List of time thresholds (double array, s)
w window width (int32, px) 148
h window height (int32, px) 17
x window x position (int32, px) 26
y window y position (int32, px) 23

It is possible to set a timer using OSC the variable:

OSC variables:

path fmt. range r. description
/.../time d no

6.32 touchosc

Interface to TouchOSC control surface.

6.33 transportgui

Show transport controls and a time line.

Attributes:
times List of marker times, or empty to use session time
x , y , w , h Position and size of window

6.34 waitforjackport

Block loading of additional modules until specified jack ports exist.

Attributes of element waitforjackport

name description (type, unit) def.
name Name used in jack (string) waitforjackport
ports List of port names to wait for (string array)
timeout Timeout (double, s) 30

TASCAR – User manual 0.233.2.4-2e1f3e1

84 CONTENTS

Ports can also be specified with <port/> sub-elements. This way it is possible to include
whitespace in port names, e.g.:

<modules>
<waitforjackport ports="obs:in_1 obs:in_2">
<port>ardour:Giso/audio_in 1</port>
<port>ardour:stereo/audio_in 1</port>
<port>ardour:stereo/audio_in 2</port>

</waitforjackport>
</modules>

6.35 waitforlslstream

Block loading of additional modules until specified LSL streams exist.

Attributes of element waitforlslstream

name description (type, unit) def.
streams List of stream names to wait for (string array)
timeout Timeout (double, s) 30

7 Actor modules

Actor modules can be used in the same way as general purpose modules, however, their
purpose is to change or query the position one or more objects by using an actor name
definition:
<simplecontroller actor="/scene/obj" .../>

Name matching with * is possible. For example, we can choose all the objects from the
scene, whose names start with N:

actor="/scene/N*"

Or if we have more than one scenes, we can choose all the objects called out from all
scenes:

actor="/*/out"

List of actor modules:

• epicycles

• geopresets

• joystick

• linearmovement

0.233.2.4-2e1f3e1 TASCAR – User manual

7.1 epicycles 85

• locationmodulator

• locationvelocity

• lslactor

• motionpath

• nearsensor

• orientationmodulator

• oscactor

• oscheadtracker

• ovheadtracker

• pendulum

• pos2lsl

• pos2osc

• qualisystracker

• rotator

• simplecontroller

• snapangle

• tracegui

7.1 epicycles

Parametric cycle/epicycle generator, to be controlled via OSC.

The algorithm was originally presented in Grimm and Herzke (2012).

Attributes of element epicycles

name description (type, unit) def.
actor pattern to match actor objects (string array)
home Home direction of sound source (double, deg) 0
path Path prefix of plugin (string)
targetaddr Target url where the current position is sent to on trigger (string)
use_transport Update traces only while transport is running (bool) true

OSC variables are:

name format meaning

TASCAR – User manual 0.233.2.4-2e1f3e1

86 CONTENTS

phi0 f Starting direction in degrees
random f Amount of randomness
f f Rounds per second of main rotation
r f Normalized radius of main rotation
theta f Alignment of Keppler ellipse
e f Excentricity of movement
f_epi f Rounds per second of epicycles
r_epi f Radius of epicycles
phi0_epi Starting direction of epicycle, in degrees
sendphi s OSC path to send current position
locate f Trigger movement to starting directions, paramter defines time to

reach in seconds
apply f Apply non-angular parameters, parameter defines time to reach in

seconds
stopat f Stop movement when given direction is next reached, in degrees
applyat ff Apply parameters when position is reached, in seconds
az f Move to this direction immediately
gohome Trigger movement to home position
home f Overwrite configured home direction

OSC variables:

path fmt. range r. description
/applyat ff no
/apply f no
/az f no
/e f yes
/f_epi f yes
/f f yes
/gohome no
/home f [0,360] yes
/incbpm f yes
/incbpmphi f [0,360] yes
/incphi0 f [0,360] yes
/locate f no
/phi0_epi f [0,360] yes
/phi0 f [0,360] yes
/r_epi f yes
/random f yes
/r f yes
/sendphi s no
/stopat f no
/tcnt i yes
/theta f [0,360] yes

0.233.2.4-2e1f3e1 TASCAR – User manual

7.2 geopresets 87

7.2 geopresets

The module geopresets allows to define preset positions and orientations of objects. Ob-
jects are moved to the defined preset delta-transformation following a von-Hann ramp from
the current delta-transformation to the new delta-transformation.

3 <scene>
4 <receiver name="out"/>
5 <source name="in">
6 <sound/>
7 </source>
8 </scene>
9 <modules>

10 <geopresets actor="/*/in" showgui="true">
11 <preset name="loc" position="2 1 0"/>
12 <preset name="locrot" position="1 -1 0" orientation="70 0 0"/>
13 <preset name="rot" orientation="0 0 0"/>
14 </geopresets>
15 </modules>

Example 15: examples/example_geopresets.tsc

In this example, the presets “pos”, “posrot” and “rot” can be reached with OSC commands,
e.g.,

/geopresets pos

The enable state and the duration can be controlled via OSC.

/geopresets/enable 1
/geopresets/duration 3

To use geopresets in combination with the simplecontroller (Section 7.19) or joystick (Sec-
tion 7.3) actor plugin, configure this module to appear before the others in the session file,
and set unlock="true" .

Attributes:
duration Duration of ramp in seconds (default: 2)
enable Enable (true, default) or disable (false) the module.
id ID used as OSC prefix (default: geopresets)
startpreset Starting preset (or empty for no starting preset)
unlock Unlock delta transformation after motion
showgui Show GUI (default: false)
width Window width in pixels (default: 200)
buttonheight Button height in pixels

Presets can be defined with one or more <preset/> elements, which support these at-
tributes:

TASCAR – User manual 0.233.2.4-2e1f3e1

88 CONTENTS

Attributes:
name Preset name
position Position (optional).
orientation Orientation (optional).

Within a preset, a number of <osc/> elements can be defined. These attributes are sup-
ported:

Attributes:
path OSC varaibale path, either “/pos” or “/zyxeuler” are appended
pos Position x y z Cartesian coordinates in meter (optional).
rot Orientation z y x Euler angles in degree (optional).

OSC messages are dispatched in the current session. No position fades are applied here.

7.3 joystick

Very simple joystick motion controller module. The recognized attributes are:

Attributes:
maxnorm Maximum distance of object from origin, or zero for no limit.
x_ax Axis number for control
x_scale Maximum velocity
x_min minimum value
x_max maximum value
x_threshold Threshold for noise suppression
preset Preset selection, currently “xbox360” or “logitechX3d”
device Device name, or empty (default) for auto-detection

x_ can be replaced by x_ (movement forward/backward), y_ (lateral movement), r_ (rota-
tion) or tilt_ (tilt). If a preset is selected and parameters set explicitly, then the preset
defaults will be overridden.

7.4 linearmovement

The <locationvelocity/> module can create linear motion of objects. The velocity v and
starting position p0 can be given in cartesian coordinates, e.g.,
<locationvelocity actor="/scene/obj" v="1 2 3" p0="0 0 1" t0="2"/>

0.233.2.4-2e1f3e1 TASCAR – User manual

7.5 locationmodulator 89

Attributes of element linearmovement

name description (type, unit) def.
actor pattern to match actor objects (string array)
p0 start position at time t0 (pos, m) 0 0 0
t0 start time t0 (double, s) 0
v velocity vector (pos, m/s) 1 1 0

All variables can be controlled via OSC; the actor attribute is used as path prefix. In the
example above this would result in these OSC variables:

/scene/obj/v/x (d)
/scene/obj/v/y (d)
/scene/obj/v/z (d)
/scene/obj/p0/x (d)
/scene/obj/p0/y (d)
/scene/obj/p0/z (d)
/scene/obj/t0 (d)
/scene/obj/vpt (ddddddd)

Note that only setting the last OSC variable /scene/obj/vpt ensures an atomic operation
of setting the variables. If you set it variable by variable, you may get undefined (and possibly
extreme) intermediate values.

OSC variables:

path fmt. range r. description
/.../p0/x f start x-position at time t0 in m yes
/.../p0/y f start y-position at time t0 in m yes
/.../p0/z f start z-position at time t0 in m yes
/.../t0 f reference session time in s yes
/.../v/x f velocity in x-direction in m/s yes
/.../v/y f velocity in y-direction in m/s yes
/.../v/z f velocity in z-direction in m/s yes
/.../vpt ddddddd no

7.5 locationmodulator

Modify location periodically.

Attributes:
m Modulation depth in meter along “x y z” axis
f Modulation frequency in Hz
p0 Start phase in degrees

TASCAR – User manual 0.233.2.4-2e1f3e1

90 CONTENTS

7.6 locationvelocity

The <locationvelocity/> module was renamed to <linearmovement/> .

7.7 lslactor

Control position from an LSL stream (e.g., via EEG).

The translation is assumed to be in meters, the rotation is ZYX-Euler angles in radians.

Attributes:
predicate LSL stream predicate
channels LSL channels, for the six translation channels

(x,y,z,rotz,roty,rotx), -1 for unused
influence Weights of channels
local Use local (true) or global translation
incremental Use incremental changes

7.8 motionpath

Allow motion along a predefined trajectory independently from the session time line, or op-
tionally based on the TASCAR time line. This module needs an active session-OSC server.
These OSC methods are added:

/motionpath/go from to
/motionpath/start
/motionpath/stop
/motionpath/locate time
/motionpath/stoptime time

go moves along the path from the time from until the time to. start starts the motion at the
current time, stop stops the motion. locate sets the path time to time without changing
the motion state. stoptime sets the time when the motion will be stopped. If the current
time is after the stop time, then the current time is set to the stop time.

Attributes:
active Play trajectory (true), or ignore trajectory (false); default: true
tascartime Use OSC time control (false) or tascar time line (true); default:

false
id Use id in OSC path; default: “motionpath”
sampledorientation Sample orientation along trajectory with this distance (default: 0)

0.233.2.4-2e1f3e1 TASCAR – User manual

7.9 nearsensor 91

7.9 nearsensor

Attributes:
url target OSC url
ttl time-to-live of UDP packets
pattern pattern ob objects to detect
parent name of parent object (= sensor position)
radius sensor radius in meter
mode operation mode: 0 = detect object origin, 1 = detect sound vertex
path OSC message target path

Emit an OSC message when an object or sound vertex is near the parent object. The
OSC message can be composed from sub-elements of the types <f/> (e.g., <f v="1.0"/>)
(float), <i/> (<i v="123"/>) (integer) or <s/> (<s v="abc"/>) (string). Multiple sub-
elements are possible.

Any number of sub-elements <msgapp/> (messages to be sent on approaching a target) and
<msgdep/> (messages to be sent on departing from a target) are possible. Each message
has the attribute

Attributes:
path OSC message target path

and the same sub-elements <f/> , <i/> and <s/> as described before.

7.10 orientationmodulator

Modify orientation around z axis periodically.

Attributes:
m Modulation depth in degrees
f Modulation frequency in Hz
p0 Start phase in degrees

7.11 oscactor

Control position from an OSC stream

The translation is assumed to be in meters, the rotation is ZYX-Euler angles in radians.

Attributes of element oscactor

name description (type, unit) def.

TASCAR – User manual 0.233.2.4-2e1f3e1

92 CONTENTS

actor pattern to match actor objects (string array)
channels Which channels to use (int32 array)
incremental Add transformation to current delta transformation, e.g., when used together

with other motion controllers (bool)
false

influence Influence of OSC values on the selected movement channels (float array)
inputchannels Number of OSC channels (uint32) 6
local Use transformations in local coordinates (bool) false
path OSC path (string)

The influence can be controlled during run-time:

OSC variables:

path fmt. range r. description
/path/influence ffffff no Influence of OSC values on the selected movement channels
/path ffffff no OSC data variable

7.12 oscheadtracker

Headtracking module for MPU6050 with WiFi module, using OSC communication. To use
this headtracker, connect to the WiFi provided by the headtracker.

Attributes of element oscheadtracker

name description (type, unit) def.
actor pattern to match actor objects (string array)
apply_loc Apply translation based on accelerometer (not implemented) (bool) false
apply_rot Apply rotation based on gyroscope and accelerometer (bool) true
autoref Filter coefficient for estimating reference orientation from average di-

rection, or zero for no auto-referencing (double)
1e-05

autoref_zonly Compensate z-rotation only, requires sensor alignment (bool) true
combinegyr Combine quaternions with gyroscope based second estimate for in-

creased resolution of pose estimation. (bool)
true

connectwlan connect to sensor to external WLAN (bool) false
eogpath OSC target path for EOG data, or empty for no EOG (string)
rawpath OSC target path for raw data, or empty for no raw data (string)
name Prefix in OSC control variables (string) oscheadtracker
rotpath OSC target path for rotation data (string)
roturl OSC target URL for rotation data (string)
smooth Filter coefficient for smoothing of quaternions (double) 0.1
targetip target IP address when using external WLAN (string)
ttl Time-to-live of OSC multicast data (uint32) 1
url Target URL for OSC data logging, or empty for no datalogging (string)
wlanpass passphrase of external WLAN (string)
wlanssid SSID of external WLAN (string)

0.233.2.4-2e1f3e1 TASCAR – User manual

7.13 ovheadtracker 93

7.13 ovheadtracker

headtracking module for MPU6050 from repository https://github.com/gisogrimm/
ov-client.

Attributes of element ovheadtracker

name description (type, unit) def.
accscale Scaling factor of accelerometer, default value

scales to m/s2 (double)
1670.13

actor pattern to match actor objects (string array)
apply_loc Apply translation based on accelerometer (not

implemented) (bool)
false

apply_rot Apply rotation based on gyroscope and ac-
celerometer (bool)

true

autoref Filter coefficient for estimating reference orien-
tation from average direction, or zero for no
auto-referencing (double)

0

autoref_zonly Compensate z-rotation only, requires sensor
alignment (bool)

false

axes Order of axes, or -1 to not use axis (int32 array) 0 1 2
calib0path OSC-Path to which a trigger is sent on start of

calibration path (string)
/calib0

calib1path OSC-Path to which a trigger is sent on end of
calibration path (string)

/calib1

combinegyr Combine quaternions with gyroscope based
second estimate for increased resolution of
pose estimation. (bool)

true

devices List of serial port device candidates (string ar-
ray)

/dev/ttyUSB0 /dev/ttyUSB1 /dev/ttyUSB2

gyrscale Scaling factor of gyroscope, default value scales
to deg/s (double)

16.4

levelpattern TASCAR internal path of level meter to read
level data (string array)

name Prefix in OSC control variables (string) ovheadtracker
rotpath OSC target path for rotation data (string)
roturl OSC target URL for rotation data (string)
send_only_quaternion Send only quaternion data instead of raw sen-

sor data (bool)
false

smooth Filter coefficient for smoothing of quaternions
(double)

0

tiltmap tilt mapping, [in1 out1 in2 out2] (float array) 0 0 180 180
tiltpath OSC path for tilt (string) /tilt
tilturl OSC target URL for tilt (string)
ttl Time-to-live of OSC multicast data (uint32) 1
url Target URL for OSC data logging, or empty for

no datalogging (string)

7.14 pendulum

Generate pendular movements

TASCAR – User manual 0.233.2.4-2e1f3e1

https://github.com/gisogrimm/ov-client
https://github.com/gisogrimm/ov-client

94 CONTENTS

Attributes:
amplitude Starting amplitude in degrees
frequency Swinging frequency in Hz
decaytime 50% decay time of pendulum movement
starttime Time when movement starts
distance Length of pendulum

7.15 pos2lsl

The module pos2lsl sends position and orientation of TASCAR objects as OSC message.
This can be used to control objects in computer graphics tools. Example:
<pos2lsl pattern="/*/out" transport="false"/>

The pattern attribute specifies the object (or objects) whose geometry information will be
sent.

Attributes:
pattern Pattern of TASCAR object names (default: /*/*). See actor mod-

ules for details.
transport Send data only while transport is rolling (default: true)

7.16 pos2osc

The module pos2osc sends position and orientation of TASCAR objects as OSC message.
This can be used to control objects in computer graphics tools. Example:
<pos2osc url="osc.udp://localhost:9999/" pattern="/*/cg_*" mode="2"/>

The pattern attribute specifies the object (or objects) whose geometry information will be
sent. In the example above all objects, whose name starts with cg_ will send geometry data.
The Euler-angles are sent in degrees, Cartesian coordinates in meter.

Attributes of element pos2osc

name description (type, unit) def.
name Default name used in OSC variables (string) pos2osc
pattern Pattern of TASCAR object names; see actor module documen-

tation for details. (string array)
/*/*

url Target URL (string) osc.udp://localhost:9999/

ttl Time to live of OSC multicast messages (uint32) 1
mode Message format mode (uint32) 0

0 : send to /scene/name/pos (x,y,z) and /scene/name/rot
(Euler-Z,Euler-Y,Euler-X)

0.233.2.4-2e1f3e1 TASCAR – User manual

7.17 qualisystracker 95

1 : send to /scene/name/pos (x,y,z,Euler-Z,Euler-Y,Euler-X)
2 : send to /tascarpos (/scene/name,x,y,z,Euler-Z,Euler-
Y,Euler-X)
3 : send to /tascarpos (name,x,y,z,Euler-Z,Euler-Y,Euler-X)
4 : send to /avatar /lookAt x,y,z,lookatlen
5 : send to /avatar Euler-Z
6 : send to /avatar <orientationname> Euler-Y, Euler-Z, Euler-
X (delta orientation only)
7 : send to /avatar <orientationname> Euler-Y, Euler-Z, Euler-
X
8 : send to /avatar Euler-Y, Euler-Z, Euler-X (delta orientation
only, degree)
9 : send to /avatar <orientationname> Euler-X, Euler-Y, Euler-
Z (delta orientation only)
11 : send to /avatar/<objname> x, y, z, Euler-Z, Euler-Y, Euler-
X

addparentname When sending sound vertex positions, add parent name to ver-
tex name (bool)

false

avatar Name of object to be controlled (for control of game engines)
(string)

ignoreorientation Ignore delta-orientation of source, send zeros instead (bool) false
lookatlen Duration of look-at animation (for control of game engines)

(double, s)
1

orientationname Name for orientation variables (string) /headGaze
oscale Scaling factor for orientations (float) 1
sendsounds Send also position of sound vertices (bool) false
skip Skip frames to reduce network traffic (uint32) 0
threaded Use additional thread for sending data to avoid blocking of real-

time audio thread (bool)
true

transport Send only while transport is rolling (bool) true
triggered Send data only when triggered via OSC (bool) false

7.17 qualisystracker

Interface for Qualisys tracking software

Attributes:
qtmurl URL of qualisys track manager
timeout Response timeout in seconds
rigid Name of rigid to be tracked
influence Weights of channels
local Use local (true) or global translation
incremental Use incremental changes

7.18 rotator

The <rotator/> module can create parametric rotation of objects around the z-axis. Four
modes are supported, linear (mode="0" , default), sigmoid (mode="1"), cosine (mode="2"),
and free (mode="3").

TASCAR – User manual 0.233.2.4-2e1f3e1

96 CONTENTS

Attributes of element rotator

name description (type, unit) def.
actor pattern to match actor objects (string array)
mode Operation mode (uint32, 0|1|2|3) 0
phi0 Start angle (sigmoid/cosine movement) (double, deg) -90
phi1 End angle (sigmoid/cosine movement) (double, deg) 90
t0 Starting time (double, s) 0
t1 End time (sigmoid/cosine movement) (double, s) 1
w Angular velocity (double, deg/s) 10

OSC variables:

path fmt. range r. description
/.../mode i yes Operation mode
/.../phi0 f yes
/.../phi1 f yes
/.../t0 f yes
/.../t1 f yes
/.../w f yes Angular velocity in deg/s

Examples:

Linear rotation
<rotator mode="0" t0="2" w="10" actor="/*/out"/>

Oz = w(t− t0) (8)

Sigmoid rotation
<rotator mode="1" t0="2" t1="5" phi0="-120" phi1="10" actor="/*/out"/>

Oz = φ0 +
φ1 − φ0

1 + e−2π(t−0.5(t0+t1))/(t1−t0)
(9)

Cosine rotation
<rotator mode="2" t0="2" t1="5" phi0="-120" phi1="10" actor="/*/out"/>

Oz =


φ0 t < t0
φ0 +

1
2(φ1 − φ0)(1− cos(π t−t0

t1−t0
)) t0 ≤ t ≤ t1

φ1 t1 < t

(10)

0.233.2.4-2e1f3e1 TASCAR – User manual

7.19 simplecontroller 97

Free rotation

Same as linear, but the rotation phase is continuously incremented independent of the trans-
port time.

7.19 simplecontroller

This module creates a minimal graphical user interface for mouse and keyboard motion
control of objects within a TASCAR scene. The recognized attributes are:

Attributes of element simplecontroller

name description (type, unit) def.
actor pattern to match actor objects (string array)
maxnorm Maximum distance of object from origin, or zero for no limit. (double, m) 0
vr Angular velocity (double, deg/s) 90
vx Velocity in x direction (double, m/s) 1
vy Velocity in y direction (double, m/s) 1
vz Velocity in y direction (double, m/s) 1

Example:
<simplecontroller actor="/*/out" maxnorm="0"/>

7.20 snapangle

This plugin adjusts the orientation of some objects to the most appropriate orientation be-
tween a controller and a list of candidates.

Attributes of element snapangle

name description (type, unit) def.
actor pattern to match actor objects (string array)
bypass Bypass algorithm (bool) false
candidates Path of target candidates (string)
name Default name used in OSC variables (string) snapangle
srcobj Path of source object (string)

7.21 tracegui

A GUI module to show traces of a subset of objects, controlled by the actor attribute.

TASCAR – User manual 0.233.2.4-2e1f3e1

98 CONTENTS

Attributes:
tracelen Length of trace in seconds (default: 4)
fps Display frame rate, frames per second (default: 10)
guiscale Zoom factor of GUI (default: 10)
unitcircle Show unit circle (default: true)
origin Show cross in origin (default: true)
x ,y ,w ,h Window position and size

An example which shows traces of all objects not starting with an “o”:
<modules>

<tracegui actor="/*/[!o]*" fps="20" guiscale="2.2" tracelen="1.6"/>
</modules>

0.233.2.4-2e1f3e1 TASCAR – User manual

8 Audio plugins 99

8 Audio plugins

Each sound vertex <sound/> , each diffuse sound field <diffuse/> , and each receiver
<receiver/> can contain a list of audio plugins for processing and analysis, such as tone
generators or speech analysis for lip synchronization modeling. These audio plugins are
specified within the <plugins/> section within a <sound/> or <receiver/> element, e.g.:

9 <sound name="wheel" z="-0.5">
10 <plugins>
11 <sndfile name="sounds/redcar_loop1.wav" levelmode="rms" level="85"/>
12 <sine f="1000" a="70"/>
13 </plugins>
14 </sound>

Example 16: examples/example_audioplugins.tsc

Audio plugins may share their variables via OSC. See the list of OSC variables to check
which variables can be accessed.

Audio plugins are processed in the order they appear in the configuration within the
<plugins/> section. For sound vertices, they are processed before the sound is handed
to the acoustic model. For receivers, audio plugins are processed after the post processing
function of the render format.

To profile the plugin performance, it is possible to set the attribute profilingpath to an
OSC path that can be recorded using the datalogging plugin. The size attribute of the
OSC variable in the datalogging must match the number of plugins, see Example 3 in the
<session/> section. The data contains the time spent in each processing cycle in seconds,
for each plugin. Please note that the clock granularity is one microsecond on Linux machines.

List of audio plugins:

• allpass

• bandlevel2osc

• bandpass

• const

• delay

• feedbackdelay

• fence

• filter

• flanger

• gain

• gainramp

TASCAR – User manual 0.233.2.4-2e1f3e1

100 CONTENTS

• gate

• hannenv

• identity

• level2hsv

• level2osc

• lipsync

• lipsync_paper

• lookatme

• loopmachine

• metronome

• noise

• onsetdetector

• pink

• pulse

• sessiontime

• simplesynth

• sine

• sndfile

• sndfileasync

• speechactivity

• spkcalib

• spksim

• transportramp

• tubesim

8.1 allpass

Allpass filter plugin with filter design in the z-plane.

0.233.2.4-2e1f3e1 TASCAR – User manual

8.2 bandlevel2osc 101

Attributes of element allpass

name description (type, unit) def.
bypass Bypass plugin (bool) false
f Phase jump frequency (double, Hz) 1000
nstages Number of biquad-stages (uint32) 3
r Allpass pole radius (double) 0.9

OSC variables:

path fmt. range r. description
/.../bypass i bool yes

8.2 bandlevel2osc

Send band levels via OSC.

Attributes of element bandlevel2osc

name description (type, unit) def.
bandwidth band width (float, octaves) 1
f Center frequencies (float array, Hz) 250 500 1000 2000
mode Level mode [dbspl|rms|max] (string) dbspl
path Target path (string) /level
sendwhilestopped Send also when transport is stopped (bool) false
skip Skip frames (uint32) 0
threaded Use additional thread for sending data (bool) true
url Target URL (string) osc.udp://localhost:9999/

If N is the number of channels and B the number of frequency bands, the OSC message will
contain N ∗ B + 1 floating point values. The first value contains the object time in seconds,
the other floats contain the RMS level within the current audio block in dB SPL.

8.3 bandpass

4th order (two biquads) bandpass filter. Gain is normalized to zero at the geometric average
of the frequencies.

Attributes of element bandpass

name description (type, unit) def.
bypass bypass plugin (bool) false
fmax Maximum frequency (float, Hz) 20000
fmin Minimum frequency (float, Hz) 100

TASCAR – User manual 0.233.2.4-2e1f3e1

102 CONTENTS

OSC variables:

path fmt. range r. description
/.../bypass i bool yes
/.../fmax f]0,20000] yes Upper cutoff frequency in Hz
/.../fmax ff no Fade the upper cutoff frequency, first parameter is new frequency

in Hz, second parameter is fade duration in s
/.../fmin f]0,20000] yes Lower cutoff frequency in Hz
/.../fmin ff no Fade the lower cutoff frequency, first parameter is new frequency

in Hz, second parameter is fade duration in s

8.4 const

Generate constant numbers as audio signal.

Attributes of element const

name description (type, unit) def.
a amplitude, one entry per channel (float array, Pa) 1

OSC variables:

path fmt. range r. description
/.../a f [0,120] no

8.5 delay

Delay the vertex audio signal. One entry for each audio channel is possible. If fewer values
than channels are provided, the delay values starting from index zero are repeated.

Attributes of element delay

name description (type, unit) def.
delay Delays in seconds (double array, s) 1

8.6 feedbackdelay

Feedback delay line.

Attributes of element feedbackdelay

name description (type, unit) def.
dry Linear gain of direct input (float) 1
f Resonance frequency (float, Hz) 1000
feedback Linear feedback gain (float) 0.5
maxdelay Maximum delay line length (uint64, samples) 44100

0.233.2.4-2e1f3e1 TASCAR – User manual

8.7 fence 103

wet Linear gain of input to delayline (float) 1

OSC variables:

path fmt. range r. description
/.../dry f [0,1] yes Linear gain of direct input
/.../feedback f]-1,1[yes Linear feedback gain
/.../f f]0,8000] yes Resonance frequency
/.../wet f [0,1] yes Linear gain of input to delayline

8.7 fence

Create an acoustic fence by increasing the gain when the object is outside a given distance
from an origin. See example_fence.tsc for an example.

Attributes of element fence

name description (type, unit) def.
alpha alpha (float) 1
origin origin (pos, m) 0 0 0
r r (float, m) 1
range range (float, m) 0.1

OSC variables:

path fmt. range r. description
/.../alpha f yes
/.../range f yes
/.../r f yes

8.8 filter

Biquad filter stage. Low-pass and high-pass use Butterworth filter design.

Attributes of element filter

name description (type, unit) def.
Q quality factor (float) 1
fc Cut-off frequncy (float, Hz) 1000
gain equalizer gain (float, dB) 0
highpass Highpass filter (true) or lowpass filter (false) (bool) false
mode filter mode: lohi, lowpass, highpass, equalizer (string) lohi

OSC variables:

path fmt. range r. description
/.../fc f]0,20000] yes Cutoff frequency in Hz

TASCAR – User manual 0.233.2.4-2e1f3e1

104 CONTENTS

8.9 flanger

Flanger plugin.

Attributes of element flanger

name description (type, unit) def.
dmax Upper bound of delay (float, s) 0.01
dmin Lower bound of delay (float, s) 0
feedback Feedback, must be between 0 and 0.999 (float) 0
maxdelay Maximum delay line length (uint64, samples) 44100
modf Modulation frequency (float, Hz) 1
wet Linear gain of input to delayline (float) 1

OSC variables:

path fmt. range r. description
/.../dmax f [0,1] yes Upper bound of delay, in s
/.../dmin f [0,1] yes Lower bound of delay, in s
/.../feedback f [0,0.999] yes Feedback
/.../modf f [0,100] yes Modulation frequency
/.../wet f [0,1] yes Linear gain of input to delayline

8.10 gain

Modify gain.

Attributes of element gain

name description (type, unit) def.
gain gain (float, dB) 0
lingain lingain (float) 1

OSC variables:

path fmt. range r. description
/.../fade ff no
/.../gain f [-40,10] yes
/.../lingain f yes

8.11 gainramp

Modify gain.

Attributes of element gainramp

name description (type, unit) def.

0.233.2.4-2e1f3e1 TASCAR – User manual

8.12 gate 105

gain Set current gain (double, dB) 0
maxgain Set maximal gain (double, dB) 0
slope Set gain slope in dB/s (double, dB) -inf

OSC variables:

path fmt. range r. description
/.../gain f [-40,10] yes
/.../maxgain f [-40,10] yes
/.../slope f [-40,10] yes

8.12 gate

Gate the vertex audio signal.

Attributes of element gate

name description (type, unit) def.
bypass Start in bypass mode (bool) true
fadeinlen Duration of von-Hann fade in (double, s) 0.01
fadeoutlen Duration of von-Hann fade out (double, s) 0.125
holdlen Time to keep output after level decay below threshold (double, s) 0.125
taurms RMS level estimation time constant (double, s) 0.005
tautrack Min/max tracking time constant (double, s) 30
threshold Threshold value between 0 and 1 (double) 0.125

OSC variables:

path fmt. range r. description
/.../bypass i bool yes
/.../taurms f yes
/.../tautrack f yes
/.../threshold f yes

8.13 hannenv

Apply periodic von-Hann ramps to the signal.

Attributes of element hannenv

name description (type, unit) def.
period Period time (double, s) 2
ramp1 First ramp length (double, s) 0.25
ramp2 Second ramp length (double, s) 0.25
steady Duration of steady state (double, s) 0.5
t0 Start time (double, s) 0

TASCAR – User manual 0.233.2.4-2e1f3e1

106 CONTENTS

8.14 identity

As the name suggests, this plugin returns the unmodified input signal.

8.15 level2hsv

Convert sound pressure level to light intensity (value component of hsv variable) of a OSC
lamp path.

When more than one channel is available, only the first channel is used.

Attributes of element level2hsv

name description (type, unit) def.
active start activated (bool) true
decay decay filter coefficient (double) 0
frange Frequency range in bandpass mode (float array, Hz) 62.5 4000
hue Hue component (0-360) (float, degree) 0
lrange Level range (float array, dB) 40 90
mode Level mode [dbspl|rms|max] (string) dbspl
path Target path (string array) /hsv
saturation Saturation component (0-1) (float) 1
skip Skip frames (uint32) 0
tau Leq duration, or 0 to use block size (float, s) 0
url Target URL (string) osc.udp://localhost:9999/

weight Level meter weight (f-weight) Z

OSC control:

OSC variables:

path fmt. range r. description
/.../active i bool yes
/.../decay f [0,1[yes decay coeficient
/.../hue f [0,360] yes Hue component (0-360 degree)
/.../lrange ff no Level range in dB
/.../saturation f [0,1] yes Saturation component (0-1)

8.16 level2osc

Send levels via OSC.

Attributes of element level2osc

name description (type, unit) def.
firstpar First parameter, or -1 to use current session time. (double) -1
frange Frequency range in bandpass mode (float array, Hz) 62.5 4000
mode Level mode [dbspl|rms|max] (string) dbspl

0.233.2.4-2e1f3e1 TASCAR – User manual

8.17 lipsync 107

path Target path (string) /level
sendwhilestopped Send also when transport is stopped (bool) false
skip Skip frames (uint32) 0
tau Leq duration, or 0 to use block size (float, s) 0
threaded Use additional thread for sending data (bool) true
url Target URL (string) osc.udp://localhost:9999/

weights Level meter weights (f-weight array) Z

The number of channels, denoted by N , and the number of frequency weights, represented
by W , determine the number of floating-point values contained in the OSC message. The
first of these values represents the object time in seconds, while the remaining values indi-
cate the RMS level within the current audio block in dB SPL.

OSC variables:

path fmt. range r. description
/.../firstpar f yes

8.17 lipsync

Lip synchronization module, similar to lipsync_paper .

Attributes of element lipsync

name description (type, unit) def.
dynamicrange Mapped dynamic range (double, dB) 165
energypath OSC destination for sending format energies, or empty for no en-

ergy messages (string)
maxspeechlevel Level normalization (double, dB) 48
onchangecount Maximum number of repetitions of equal messages in “onchange”

mode (uint32)
3

path OSC destination of blendshape messages (empty: use parent
name) (string)

scale Scaling factor of blend shapes; 3 values: kiss, jaw, lipsclosed (pos) 1 1 1
sendmode Sending mode, one of “always”, “transport”, or “onchange” (string) always
smoothing Smoothing time constant (double, s) 0.02
strmsg Message string to be added to OSC messages before blend

shapes (string)
/lipsync

threaded Use additional thread for sending data (bool) true
threshold Noise threshold, range 0-1 (double) 0.5
url Target OSC URL (string) osc.udp://localhost:9999/

vocalTract Vocal tract scaling factor (double) 1

OSC variables:

path fmt. range r. description
/.../active i bool yes
/.../dynamicrange f yes
/.../maxspeechlevel f yes

TASCAR – User manual 0.233.2.4-2e1f3e1

108 CONTENTS

/.../smoothing f yes
/.../threshold f yes
/.../vocalTract f yes

8.18 lipsync paper

Module to control lip synchronization as used in Llorach et al. (2016).

Attributes of element lipsync_paper

name description (type, unit) def.
dynamicrange Mapped dynamic range (double, dB) 165
energypath OSC destination for sending format energies, or empty for no en-

ergy messages (string)
maxspeechlevel Level normalization (double, dB) 48
onchangecount Maximum number of repetitions of equal messages in “onchange”

mode (uint32)
3

path OSC destination of blendshape messages (empty: use parent
name) (string)

scale Scaling factor of blend shapes; 3 values: kiss, jaw, lipsclosed (pos) 1 1 1
sendmode Sending mode, one of “always”, “transport”, or “onchange” (string) always
smoothing Smoothing time constant (double, s) 0.04
strmsg Message string to be added to OSC messages before blend

shapes (string)
/lipsync

threaded Use additional thread for sending data (bool) true
threshold Noise threshold, range 0-1 (double) 0.5
url Target OSC URL (string) osc.udp://localhost:9999/

vocalTract Vocal tract scaling factor (double) 1

OSC variables:

path fmt. range r. description
/.../active i bool yes
/.../dynamicrange f yes
/.../maxspeechlevel f yes
/.../smoothing f yes
/.../threshold f yes
/.../vocalTract f yes

8.19 lookatme

Onset-detector for avatar head orientation control.

Attributes of element lookatme

name description (type, unit) def.
animation Animation name (or empty for no animation) (string)
fadelen Motion duration after threshold (double, s) 1

0.233.2.4-2e1f3e1 TASCAR – User manual

8.20 loopmachine 109

levelpath Destination path of level logging (or empty) (string)
paths Space-separated list of target paths (string array)
pos_offset Position to look at on offset (or empty for no change of look direction)

(pos, m)
0 0 0

pos_onset Position to look at on onset (or empty to look at vertex position) (pos,
m)

0 0 0

tau Time constant of level estimation (double, s) 1
threshold Level threshold (double, dB SPL) 53.9794
thresholdpath Destination path of threshold criterion (or empty) (string)
url Target OSC URL (string) osc.udp://localhost:9999/

OSC variables:

path fmt. range r. description
/.../active i bool yes
/.../discordantLS i bool yes
/.../threshold f [0,120] yes

8.20 loopmachine

Simple loop machine with OSC control.

Attributes of element loopmachine

name description (type, unit) def.
bpm Beats per minute (double) 120
bypass Start in bypass mode (bool) false
delaycomp Delay compensation (double, s) 0
durationbeats Record duration (double, beats) 4
gain Playback gain (float, dB) 0
muteinput Mute input while not recording (bool) false
ramplen Ramp length (double, s) 0.01

OSC variables:

path fmt. range r. description
/.../bypass i bool yes bypass, 0 means loop is added to output
/.../clear no clear current recording
/.../gaindb f yes dB gain applied to loop
/.../gain f yes linear gain applied to loop
/.../muteinput i bool yes mute the input (play only loop)
/.../record no start recording

8.21 metronome

Attributes of element metronome

TASCAR – User manual 0.233.2.4-2e1f3e1

110 CONTENTS

name description (type, unit) def.
a1 Amplitude of first beat (double, dB SPL) 40
ao Amplitude of other beats (double, dB SPL) 33.9794
bpb Beats per bar (int32 array) 4
bpm Beats per minute (double) 120
bypass Load in bypass mode (bool) false
changeonone Apply OSC parameter changes on next bar (bool) false
fres1 Resonance frequency of first beat (double, Hz) 1000
freso Resonance frequency of other beats (double, Hz) 600
q1 Filter resonance of first beat (double) 0.997
qo Filter resonance of other beats (double) 0.997
sync Use object time synchronization (bool) false

OSC messages can be dispatched on beat one using the “/dispatchin” OSC variables.

OSC variables:

path fmt. range r. description
/.../a1 f [0,120] yes
/.../ao f [0,120] yes
/.../bpb i no
/.../bpm f yes
/.../bypass i bool yes
/.../changeonone i bool yes
/.../dispatchin i yes
/.../dispatchmsg (any) no
/.../dispatchpath s string yes
/.../filter/f1 f yes
/.../filter/fo f yes
/.../filter/q1 f yes
/.../filter/qo f yes
/.../sync i bool yes

Each sub-message can be defined using a <msg/> element.

Attributes of element msg

name description (type, unit) def.
path OSC path name (string)

8.22 noise

White noise generator.

Attributes of element noise

name description (type, unit) def.
a Noise level (double, dB SPL) 33.9794

0.233.2.4-2e1f3e1 TASCAR – User manual

8.23 onsetdetector 111

OSC variables:

path fmt. range r. description
/.../a f [0,120] yes

8.23 onsetdetector

Onset detector for automated animations.

Attributes of element onsetdetector

name description (type, unit) def.
path Destination OSC path (string)
side (string)
tau Level estimator time constant (double, s) 1
taumin Trigger blocking time (double, s) 0.05
threshold Detection threshold (double, dB SPL) 53.9794
url Destination OSC URL (string) osc.udp://localhost:9999/

8.24 pink

Add a (band limited) frequency-dependent noise to the input signal. The power spectral
density P is

P (f) ∝ 1

fα
(11)

in the interval fmin ≤ f ≤ fmax, and zero otherwise.

Attributes of element pink

name description (type, unit) def.
alpha Frequency exponent alpha, 1 = pink (double) 2
fmax Maximum frequency (double, Hz) 4000
fmin Minimum frequency (double, Hz) 62.5
level RMS level (double, dB SPL) 33.9794
mute load muted (bool) false
period Period time of frozen noise (double, s) 4
use_transport Play only if transport is running (bool) false

If use_transport is activated, the object time is used for the frozen noise position.

OSC variables:

path fmt. range r. description
/.../level f [0,120] yes
/.../mute i bool yes
/.../use_transport i bool yes

TASCAR – User manual 0.233.2.4-2e1f3e1

112 CONTENTS

8.25 pulse

Add a pulse train to the input signal.

Attributes of element pulse

name description (type, unit) def.
a Pulse amplitude (double, Pa) 0.001
f Pulse frequency (double, Hz) 1000

OSC variables:

path fmt. range r. description
/.../a f [0,120] yes
/.../f f yes

8.26 sessiontime

This audio plugin returns the session time in seconds as output. It has no configurable
parameters.

8.27 simplesynth

Simple MIDI synthesizer.

Attributes of element simplesynth

name description (type, unit) def.
autoconnect Autoconnect to input ports (bool) false
connect ALSA device name to connect to

(string)
decay Tone decay time (float, s) 4
decaydamping Damping tone decay time (float, s) 8
decayoffset Tone offset decay time (float, s) 0.5
detune Detuning frequency in Hz (float, Hz) 1
f0 Tuning frequency (float, Hz) 440
level Sound level (float, dB SPL) 69.5424
maxvoices Maximum number of polyphonic

voices (uint32)
8

midichannel MIDI channel (int32) 0
onset Onset time (float, s) 0.02
partialweights Linear amplitudes of tone components

(float array)
1 0.562 0.316 0.355 0.282 0.355 0.2 0.0891 0.0398 0.0398 0.0398

OSC variables:

path fmt. range r. description

0.233.2.4-2e1f3e1 TASCAR – User manual

8.28 sine 113

/.../decaydamping f [0,10] yes Damping decay in s
/.../decay f]0,20] yes Decay time in s
/.../decayoffset f]0,20] yes Offset decay time in s
/.../detune f [-10,10] yes Detuning in Hz
/.../f0 f [100,1000] yes Tuning frequency in Hz
/.../level f [0,100] yes Sound level in dB SPL
/.../onset f [0,0.2] yes Onset duration in s

8.28 sine

Add a sine wave to the input signal.

Attributes of element sine

name description (type, unit) def.
a Amplitude (double, dB SPL) 33.9794
f Frequency (double, Hz) 1000

OSC variables:

path fmt. range r. description
/.../a f [0,100] yes Amplitude in dB SPL
/.../f f]0,20000] yes Frequency in Hz

8.29 sndfile

The ’sndfile’ plugin reads sound files and adds their content to the audio signal. Playback can
be controlled by the session timeline, triggered by OSC messages, or independent of both.
The libsndfile library (http://www.mega-nerd.com/libsndfile/) is used internally, so
all file and sample formats supported by this library are also supported by this plugin.

Attributes of element sndfile

name description (type, unit) def.
attribution attribution of license, if applicable (string)
channel First sound file channel to be used, zero-base (uint32) 0
channelorder Channel order in case of First Order Ambisonics files, “FuMa”, “ACN” or “none”

(string, FuMa|ACN|none)
length length of sound sample, or 0 to use whole file length (double, s) 0
level level, meaning depends on levelmode (double, dB) -inf
levelmode level mode, “rms”, “peak” or “calib” (string) rms
license license type (string)
loop loop count or 0 for infinite looping (uint32) 1
loopcrossexp exponent of von-Hann crossfade for seamless loop (float) 1
loopcrosslen duration of crossfade for seamless loop (float, s) 0
mute Load muted (bool) false
name Sound file name (string)
normalization Normalization in case of First Order Ambisonics files. (string, FuMa|SN3D) FuMa

TASCAR – User manual 0.233.2.4-2e1f3e1

http://www.mega-nerd.com/libsndfile/

114 CONTENTS

position Start position within the scene (double, s) 0
rampend von-Hann ramp duration at end of sound (float, s) 0
rampstart von-Hann ramp duration at start of sound (float, s) 0
resample Allow resampling to current session sample rate (bool) false
start Start position within the file (double, s) 0
transport Use session time base (bool) true
triggered Use OSC variable ‘/loop’ to trigger playback (ignores attributes ‘position’ and

‘loop’) (bool)
false

weighting level weighting for RMS mode (f-weight) Z

Multi-channel sound files

If the plugin receives multiple channels (e.g., when used in a receiver, a diffuse sound field or
a multichannel route), all channels starting with the channel number channel are returned. If
the file does not contain a sufficient number of channels, silence is returned for all channels
not available in the sound file.

If the number of plugin channels (not sound file channels) is four, and the attribute
channelorder is not “none”, a First Order Ambisonics sound file with SN3D normalization
is assumed. In that case, the channelorder should be set to the correct channel order.

Calibration of levels

In the level mode “rms”, the RMS value of the first used channel will be used for adjusting
the level, i.e., all channels will be scaled with the same value such that the first channel has
the RMS level level .

• Level mode “rms” scales the signal so the RMS of the first channel corresponds to
level .

• Level mode “peak” scales the signal so the peak over all channels corresponds to
level .

• Level mode “calib” scales the signal by level minus 93.979 dB.

Internally, the signal is measured in Pascal. Therefore, a signal with an RMS value of 1
corresponds to a sound pressure level of 93.979 dB.

Please note that currently the calibration level and the gain of input ports also affects the
calibration of the plugins.

The level calibration is applied before calculating any ramps.

Temporal alignment

All times are defined relative to the object time of the sound file plugin’s parent object. In
most cases this is equivalent to the session time, however, it can be changed with the start

attribute of the objects in scenes. If the parent object is not within a scene (e.g., a ’route’
module), the session time is used.

See also Figure 13 for more details on the time and position conventions.

0.233.2.4-2e1f3e1 TASCAR – User manual

8.29 sndfile 115

object time

file time

file channels

channel -

|
start

- length -

|
position

|

loop
1 2

Figure 13: Temporal alignment of sounds added with the sndfile audio plugin.

OSC control

To load a file via OSC, send to the path /loadfile (for full path check the list of OSC
variables in TASCAR) with two strings and a float parameter. The first string is the file name,
either as absolute path or relative to the current session file. The second string is the level
mode, see above for details. The third parameter is the level in dB, again see above for
details.

/scene/in/0/ap0/sndfile/loadfile sound.wav rms 50

If an invalid file name or level mode is provided, a warning is printed to the console running
TASCAR (to see such warnings start TASCAR from a terminal).

List of OSC variables:

name format description
/loop i In normal mode: Loop count, 0 for infitie loop.

In “triggered” mode: Trigger of playback, number defines number
of repetitions, 0 will stop playback.

/position f Position in scene in seconds
/start f Position in sound file in seconds
/loadfile s Load file with pre-configured level mode and level
/loadfile ssf Load file with level mode and level (see above)
/mute i Mute state

OSC variables:

path fmt. range r. description
/.../loadfile s no
/.../loadfile ssf no
/.../loop i yes

TASCAR – User manual 0.233.2.4-2e1f3e1

116 CONTENTS

/.../mute i bool yes
/.../position f yes temporal position relative to object time, in seconds
/.../rampend f [0,10] yes Ramp duration in s at end of sound
/.../rampstart f [0,10] yes Ramp duration in s at start of sound
/.../start f yes number of seconds to cut at the beginning of the sound file

/position and /loop will affect the file which is loaded next. It will not affect the current
file.

8.30 sndfileasync

Add a sound file and play back at a given time, with asynchronous file access. This plugin
provides an alternative to the sndfile audio plugin (see 8.29). It does not require to load the
full file during session load, which can be advantageous for huge files. As a drawback, it is
not possible to configure absolute RMS value, and dropouts may occur if the file system is
slower than required. If the plugin receives multiple channels (e.g., when used in a receiver
or a diffuse sound field), all channels starting at channel number channel will be returned.
If the file does not contain a sufficient number of channels, silence will be returned for all
channels not available in the sound file.

Attributes of element sndfileasync

name description (type, unit) def.
attribution attribution of license, if applicable (string)
caliblevel Calibration level (double, dB SPL) 93.9794
channel First sound file channel to be used, zero-base (uint32) 0
license license type (string)
loop loop count or 0 for infinite looping (uint32) 1
mute Load muted (bool) false
name Sound file name (string)
position Start position within the scene (double, s) 0
transport Use session time base (bool) true

OSC variables:

path fmt. range r. description
/.../mute i bool yes

93.979 dB corresponds internally to a full-scale signal.

8.31 speechactivity

Speech activity and onset detector. This plugin creates an LSL outlet and sends the states
via OSC.

0.233.2.4-2e1f3e1 TASCAR – User manual

8.32 spkcalib 117

Attributes of element speechactivity

name description (type, unit) def.
path OSC destination path (string) /in.0
tauenv Envelope tracking time constant (double, s) 1
tauonset Onset detection time constant (double, s) 1
threshold Envelope threshold (double, dB SPL) 48.9794
transitionsonly Send only when a transition occurs (bool) false
url OSC destination URL (string) osc.udp://localhost:9999/

8.32 spkcalib

This plugin allows to use a loudspeaker definition file for calibration processing. Typical
application is in a standalone route or as post processing of virtual stereo microphones.
Please note that diffuse sound field properties are not applicable. Also port connections
defined in the loudspeaker layout are not applied.

The number of channels must match the total number of output channels (main speaker,
subwoofer, and convolution channels).

See also section 10.1 for a description of the loudspeaker calibration method.

Attributes of element spkcalib

name description (type, unit) def.
layout name of speaker layout file (string)

8.33 spksim

This plugin implements a loudspeaker simulation, which creates distortion.

First, the input x(t) is filtered with the 2nd order resonance filter. The filtered signal xr(t) is
then distorted sample-wise,

xd(t) =
s

s+ |xr(t)|
xr(t), (12)

with the distortion factor s. Larger values of s lead to a smaller distortion. The coupling of
the speaker membrane to the air is simulated using a derivative high-pass filter:

y(t) = g
d
dt

xd(t) (13)

Attributes of element spksim

name description (type, unit) def.
bypass Bypass plugin (bool) false
fres Resonance frequency (double, Hz) 1200
gain Post-gain g (double, dB) 0
q q-factor of the resonance filter (double) 0.8

TASCAR – User manual 0.233.2.4-2e1f3e1

118 CONTENTS

scale Distortion factor s (double) 0.5
wet Wet (1) - dry (0) mixture gain (float) 1

OSC variables:

path fmt. range r. description
/.../bypass i bool yes
/.../fres f [1,10000] yes Resonance frequency in Hz
/.../gain f [-40,40] yes Post-gain in dB
/.../q f]0,1[yes q-factor of the resonance filter
/.../scale f yes
/.../wet f [0,1] yes

8.34 transportramp

Apply a raised cosine-ramp after changes of the transport state. The duration of the ramp
can be controlled separately for transitions from stopped to rolling (startduration) and from
rolling to stopped (endduration).

If the ramps are not pre-calculated (precalc="false"), the duration can be changed via
OSC.

Attributes of element transportramp

name description (type, unit) def.
endduration Duration of ramp when transport is switched from “rolling” to “stopped” (float, s) 0.025
precalc Operation mode, to switch between precalculated and online-generated ramps

(bool)
true

startduration Duration of ramp when transport is switched from “stopped” to “rolling” (float, s) 0.025

8.35 tubesim

This plugin implements a vacuum tube simulation that generates distortions.

This simulation applies a qualitative model of vacuum tubes. It consists of two stages: First,
the output characteristics of a triode vacuum tube are simulated:

I(x) = max{x+ x0, 0}
3
2 (14)

Here x corresponds to the grid voltage, x0 to the grid bias voltage and I to the anode current.
In this qualitative model, the anode voltage is not explicitly considered. The second stage
simulates the overdrive:

Î(x) =
I(x)

I(x) + s
(15)

with the saturation parameter s, and the limited anode current Î. The offset of the simulation
output signal is then corrected, and a pre-gain pi and a post-gain po is applied:

y(x) = go ·
(
Î (gi · x)− Î (x0)

)
(16)

0.233.2.4-2e1f3e1 TASCAR – User manual

8.35 tubesim 119

The resulting input-output characteristics, sine waveform and distortion spectrum is shown
in Figure 14.

-0.1 -0.05 0 0.05 0.1

-0.4

-0.2

0

0.2

0.4

o
u
tp

u
t

input

 0

0.05

 0.1

0.15

 0.2

0.25

0 0.2 0.4 0.6 0.8 1

-0.4

-0.2

0

0.2

0.4

offset varied

o
u
tp

u
t

input

2 4 8
-80

-60

-40

-20

0

o
u
tp

u
t
/
d
B

frequency / kHz

-0.1 -0.05 0 0.05 0.1

-0.6

-0.4

-0.2

0

0.2

0.4

o
u
tp

u
t

input

-40

-30

-20

-10

 0

0 0.2 0.4 0.6 0.8 1

-0.6

-0.4

-0.2

0

0.2

0.4

saturation varied

o
u
tp

u
t

input

2 4 8
-80

-60

-40

-20

0

o
u
tp

u
t
/
d
B

frequency / kHz

Figure 14: Input-output characteristics (left panel), sine waveform (middle panel) and dis-
tortion spectrum (right panel) of the tube simulation for various offset parameters x0 (upper
row) and saturation values 20 log 10(s) (lower row).

Attributes of element tubesim

name description (type, unit) def.
bypass Bypass plugin (bool) false
offset Input offset x_0 (float) 0.5
postgain Post-gain g_o (float, dB) 0
pregain Pre-gain g_i (float, dB) 0
saturation Saturation parameter s (float, dB) -6.0206
wet Wet (1) - dry (0) mixture gain (float) 1

OSC variables:

path fmt. range r. description
/.../bypass i bool yes
/.../offset f [0,1] yes Input offset
/.../postgain f [-50,10] yes Output gain in dB

TASCAR – User manual 0.233.2.4-2e1f3e1

120 CONTENTS

/.../pregain f [-10,50] yes Input gain in dB
/.../saturation f [-40,0] yes Saturation threshold in dB
/.../wet f [0,1] yes
/.../wet ff no

0.233.2.4-2e1f3e1 TASCAR – User manual

9 Spatial mask plugins 121

9 Spatial mask plugins

Spatial masks can be used to control a direction dependent gain in receivers. This gain is
applied independent of the receiver type, i.e., the same spatial gain map can be created
for any type of receiver, from omni-directional, via binaural up to multi-channel loudspeaker
receiver types.

To add a spatial mask to a receiver, in any receiver type add a <maskplugin/> element
within the receiver section, e.g.:
<receiver type="omni">

<maskplugin type="multibeam" numbeams="2" az="30 -90"/>
</receiver>

List of mask plugins:

• fig8

• multibeam

9.1 fig8

Attributes of maskplugin element fig8

name description (type, unit) def.
drawradius Draw mask plugin with this radius in TASCAR GUI, 0 for no drawing. (float, m) 0
type mask plugin type (string)

9.2 multibeam

Add multiple steerable beams. The directional gain g as a function of the incident direction
p is defined as

g(p) = gmin + (1− gmin)
N∑
k=1

gk
(1 + cos (min{π, sk arccos (p · pk)}))

2
(17)

with the minimum gain gmin, the number of beams N , the on-axis gain gk, the selectivity sk
and the steering vector pk.

Attributes of maskplugin element multibeam

name description (type, unit) def.
az Azimuth of steering vectors (float array, deg) 0
drawradius Draw mask plugin with this radius in TASCAR GUI, 0 for no drawing. (float, m) 0
el Elevation of steering vectors (float array, deg) 0

TASCAR – User manual 0.233.2.4-2e1f3e1

122 CONTENTS

gain On-axis gain (float array, dB) 0
maxgain Maximum gain (float, dB) 0
mingain Minimum gain (float, dB) -inf
numbeams Number of beams (uint32) 1
selectivity Selectivity, 0 = omni, 1 = cardioid (6 dB threshold) (float array, 1/pi) 1
type mask plugin type (string)

0.233.2.4-2e1f3e1 TASCAR – User manual

10 Calibration and level metering 123

10 Calibration and level metering

TASCAR offers a level meter for each primary or diffuse sound field and receiver. In the level
meters, root-mean-square (RMS) values in dB SPL, averaged over the past two seconds,
are shown. In TASCAR, internal values are measured in Pa. This means that a sinusoid
with an amplitude of one corresponds to a level of 91 dB SPL. The level of sound sources
corresponds to the anechoic free field level in a distance of 1 m.

Each input port (<sound/> element) and output port (<receiver/> element) of
TASCAR can be calibrated with the calibration level attribute caliblevel .

At the input, a full-scale sine wave corresponds to caliblevel−3 dB (because the RMS of a
sine wave is −3 dB). This means that in case of the sine wave, the level of that sound source
is 91 dB SPL, in a 1 m distance and anechoic conditions. The last bit is important: In virtual
acoustics we cannot easily calibrate the level of sound sources at the listening position. In
anechoic conditions this can be calculated with the 1

r amplitude law, but in case of reflections
this 1

r law is not valid anymore.

For the sine wave the CREST-factor (difference between peak and RMS level) is 3 dB, but
for speech this is roughly 20-24 dB. Thus typically for speech one will need a much higher
caliblevel than 93 dB, because otherwise a full-scale speech signal would result in only
70 dB SPL. Typically, any speech test software will have some output calibration value. In
case of the Oldenburg Measurement Applications (OMA) this is the same as the caliblevel

of TASCAR. Most likely the value of it will be in the order of 120 dB SPL (similar to the
caliblevel of the TASCAR receiver). If the caliblevel -value of the speech test software
is known, exactly the same value should be used for the TASCAR input caliblevel . In that
case, the input level meters of TASCAR should show the same values as the output level
meters of the speech test.

For a calibration of loudspeaker layouts, it is recommended to use the tool “tascar_spkcalib”
(see section 10.1).

To measure the sound pressure level in a virtual acoustic environment, one can place an
omni-directional microphone at the position of the main output receiver. This omni-directional
level meter should show the same numbers as a real physical sound level meter in the
center of the physical reproduction system. The sound level meters need to be configured
to “unweighted”, “Z-weighted” or “C-weighted” settings. Please be aware of the fact that in
“unweighted” mode the background noise levels can be in the order of 40-60 dB, due to
ventilation of the room, door slamming in the building, steps, nearby trains and plains etc.,
which contain extremely low frequencies.

The TASCAR level meters support three different frequency weightings: “Z” or unweighted
mode, “C” weighting (62.5 Hz to 4 kHz) and a “bandpass” weighting (500 Hz to 4 kHz).

10.1 Calibrating loudspeaker layouts with tascar_spkcalib

All loudspeaker-based rendering methods (e.g., those depending on a loudspeaker layout
file) should result in identical levels at the listening positions for virtual sound sources from
the directions of the loudspeakers (the levels of interpolated virtual sources may differ due

TASCAR – User manual 0.233.2.4-2e1f3e1

124 CONTENTS

to differences in the rendering method).

The calibration of loudspeaker arrays consists of three steps: a) calibration of the differences
between the loudspeakers (with optional spectral correction), b) calibration of the reference
level for the reproduction of point sources and c) calibration of the gain correction for the
reproduction of diffuse sound fields. The calibration assistant tascar_spkcalib guides
you step by step through this calibration process.

If the wizard is started without specifying a layout file, a page for selecting a layout opens
first. In the next step the calibration parameters can be revised (see Figure 15). “fmin” and
“fmax” determine the frequency range of the calibration stimulus. Within the given frequency
range a 1/f characteristic is used. “duration” defines the duration of the level measurement,
“prewait” the waiting time between switching on the test stimulus and starting the level mea-
surement. The target level is specified in the “reference level” field. The other fields refer to
the frequency response correction: “bands per octave” defines the frequency resolution of
the analysis filter bank. “overlap in bands” designates a spectral smoothing over adjacent
frequency bands, e.g. to minimize the influence of notches. “max number of filter stages” is
the maximum number of equalizer stages, where each stage is realized by a biquad filter.

If the box “initial calibration” is selected, then first the operating point is determined interac-
tively before the calibration process is started (see Figure 16).

At least one measurement microphone is required for the calibration (if several measurement
microphones are used, then the intensities are averaged over all microphones). The inputs
to which the measurement microphones are connected as well as their calibration levels can
be specified in the lower area of the window.

When the calibration is complete, the layout-specific parameters are saved in the layout file.
However, all values can also be saved as default values, these are then stored in the file
.tascardefaults.xml in the home directory.

Figure 15: Revision of calibration parameters in the calibration assistant.

In the next step, the differences between the loudspeakers can be equalized (see Figure

0.233.2.4-2e1f3e1 TASCAR – User manual

10.1 Calibrating loudspeaker layouts with tascar_spkcalib 125

Figure 16: Interactive adjustment of the operation point.

17). If spectral equalization is activated, in the first step the frequency response is measured
using an analysis filter bank. Then, the broad band level at the measurement microphone is
measured for each loudspaker. Differences between loudspeakers will be equalized.

In the display, the resulting loudspeaker gain is shown (e.g., g = 0.0 dB). Furthermore, the
recording level Lmic and the recording coherence between the test signal and the recorded
signal c are shown, for each microphone. Recording levels below -50 dB FS can indicate
problems with the microphone, e.g., missing phantom power or wrong input channel. Coher-
ence values below 0.75 can be an indication for poor signal-to-noise ratio. If these values are
critical for only a single loudspeaker, it is likely that one loudspeaker channel is not connected
or distorted.

In the actual calibration step (Figure 18) the playback level of a stimulus can be adjusted
until the desired reference level is reached. For level metering either a level meter or the
connected measurement microphone (if calibrated) can be used. For the point source cal-
ibration, the stimulus is played via the first loudspeaker. The diffuse sound field calibration
activates all loudspeakers.

In the final step, the calibration can be revised and saved to the layout file.

TASCAR – User manual 0.233.2.4-2e1f3e1

126 CONTENTS

Figure 17: Equalization of loudspeakers, with spectral correction. The center frequencies
of the equalizer stages are indicated with blue markers. The thin gray line indicates the
frequency response without spectral correction, the thick red line with spectral correction.

Figure 18: Adjustment of the point source level and the diffuse sound field reproduction gain.

0.233.2.4-2e1f3e1 TASCAR – User manual

11 Interfacing from MATLAB and GNU/Octave 127

11 Interfacing from MATLAB and GNU/Octave

For the interface between TASCAR and MATLAB or GNU/Octave a set of scripts are provided
in /usr/share/tascar/matlab. There are the following scripts available:

11.1 tascar_ctl

This function can be used for some basic actions. For details see function help in MAT-
LAB/GNU Octave.

• Loading a scene, which already exists:
h = tascar_ctl(’load’,’filename.tsc’)

• Controlling the transport:
tascar_ctl(’transport’, h, ’play’)
tascar_ctl(’transport’, h, ’locate’, 15)

• Closing a scene:
tascar_ctl(’kill’,h)

• Creating a basic scene:
tascar_ctl(’createscene’,’filename’,’my_scene.tsc’)

• Create an audio player:
h = tascar_ctl(’audioplayercreate’,{sig1,sig2});
tascar_ctl(’audioplayerselect’,1);
tascar_ctl(’audioplayerselect’,2);
tascar_ctl(’kill’,h)

An example of the usage of this (and other MATLAB/GNU Octave functions) can be found in
example_controlTASCAR.m.

11.2 generate_scene

In TASCAR, virtual acoustic environments are defined in an xml file format. User can write
such a file on his own or create it using MATLAB/GNU Octave function generate_scene.
This function can generate a simple scene with one loudspeaker-based receiver, N sources
distributed on a circle around the receiver and K virtual loudspeakers, also equally distributed
on a circle around the receiver. There are a couple of parameters which can be specified by
a user - the file name, the number of sources and loudspeakers, radius of the circle, receiver
type, as well as the length of a delay line.

11.3 tascar_jackio

When we already have an XML file with a virtual environment, we may want to start per-
forming some measurements using MATLAB/GNU Octave. The function tascar_jackio

TASCAR – User manual 0.233.2.4-2e1f3e1

128 CONTENTS

is used to play and record sound via jack (jack audio connection kit). It means that we are
playing the sound using ports responsible for the sources in the virtual scene and recording
the sound using ports responsible for the receiver in the scene. Usually, it will be a test sig-
nal (for example white noise) played back and recorded (for example to compute the impulse
response of the virtual environment).

At the input of the function, we have to specify input and output jack ports which will be used
for playing and recording the signal:
[y,fs,bufsize] = tascar_jackio(x, ...

’output’, csOutputPorts, ...
’input’, csInputPorts);

Here output is a list of port connections to which the sound vector x will be
sent (typically corresponding to the virtual sound sources in a TASCAR scene, e.g.,
{’render.scene:src.0’}). The number of channels in x must match the number of
output port connections. Accordingly, input is a list of input port connections from which
the content of y will be read (e.g., the receiver outputs of a scene, or audio hardware inputs).
If you specify writable clients as input, e.g., the sound card outputs, then tascar_jackio
will connect to all readable input ports which are connected to the specified writable port.
This can be used to record the signal sent to the loudspeakers, even if it is a mixture from
several scenes. The number of channels in y will be the number of elements in the input
variable.

For more information, type help tascar_jackio (usage information), or
tascar_jackio help (full list of parameters).

11.4 tascar_ir_measure

Measure an impulse response using a sine sweep method after Farina (2000).

11.5 send_osc

The properties of objects placed in the scene or for example the transport state can be
manipulated from outside TASCAR using OSC-messages. The parameters (properties) of
an object which can be changed by sending an OSC message to TASCAR are called "OSC
variables". For example, in MATLAB/GNU Octave it can be done by using the provided
function send_osc (for UDP transport) or send_osc_tcp (for TCP transport).

The functions send_osc and send_osc_tcp are functions by which we can control a TAS-
CAR session and objects in a TASCAR scene. The default OSC port is 9877, listening on all
network devices. For more control, we can use the attributes srv_addr and srv_port to the
element <session/> , e.g.,
<session srv_addr="" srv_port="9999">

0.233.2.4-2e1f3e1 TASCAR – User manual

11.5 send_osc 129

To check the list of variables and the OSC server port in a TASCAR session, select the
sub-menu “OSC variables” in the menu “view” from the main menu bar. Each OSC variable
has its path and type. On the right side of each variable path, you can see also its type in
brackets. (f) means a floating point number, (fff) means a vector with 3 floating point
numbers (it can for example correspond to 3 coordinates for the position), (i) means integer
etc.

Function send_osc requires specifying the destination host (e.g., ’localhost’) and port num-
ber, the path, and the variable values, e.g.,
send_osc(’localhost’, 9877, ’/scene_name/object_name/pos’, ...

pos_x, pos_y, pos_z, euler_z, euler_y, euler_x);

where pos_x, pos_y, pos_z are the cartesian coordinates in meters and euler_z,
euler_y, euler_x are the rotations around x, y, and z-axis in degrees. They are always
relative to the position and orientation specified in the scene definition file.

Position can also be specified using only 3 numbers:
send_osc(’localhost’,9877,’/scene_name/object_name/pos’,...

pos_x,pos_y,pos_z)!

Orientation of the object can be also changed using:
send_osc(’localhost’,9877,’/scene_name/object_name/zyxeuler’,...

euler_z euler_y,euler_x)

To mute or solo one object, we use:
send_osc(’localhost’,9877,’/scene_name/object_name/solo’,1)
send_osc(’localhost’,9877,’/scene_name/object_name/mute’,1)

Sending OSC messages can also be used for starting, stoping or placing a scene at the
arbitrary point in time:

Stop/start a scene:
send_osc(’localhost’,9877,’/transport/stop’)
send_osc(’loclhost’,9877,’/transport/start’)

Go back to beginning / 4th second:
send_osc(’localhost’,9877,’/transport/locate’,0)
send_osc(’localhost’,9877,’/transport/locate’,4)

TASCAR – User manual 0.233.2.4-2e1f3e1

130 CONTENTS

12 Command line interfaces

All command line applications of TASCAR start with the prefix tascar_. To get a list of valid
command line options, use the flag -h or --help.

12.1 tascar cli

Usage:

tascar_cli [options] configfile

Options:

-h
--help

-j #
--jackname=#

-o #
--output=#

Output sound file name.

-r #
--range=#

-l
--licenses

Show licenses

-v
--validate

-a
--variables

Show variables

(version: 0.233.2.4-2e1f3e1)

12.2 tascar getcalibfor

Usage:

tascar_getcalibfor sessionfile [options]

Get "calibfor" values of speaker-based receivers in the session file.

Options:

-h

0.233.2.4-2e1f3e1 TASCAR – User manual

12.3 tascar_gpx2csv 131

--help

12.3 tascar gpx2csv

Usage:

tascar_gpx2csv [options] gpxfile

Options:

-h
--help

-o #
--lon=#

-a #
--lat=#

-n
--znull

-r #
--resample=#

-s #
--smooth=#

-v
--velocity

(version: 0.233.2.4-2e1f3e1)

12.4 tascar hdspmixer

Simple interface to RME HDSP9652 audio interface.
Usage:

tascar_hdspmixer [options]

Simple control of HDSP 9652 matrix mixer.

Options:

-h
--help

TASCAR – User manual 0.233.2.4-2e1f3e1

132 CONTENTS

-i
--input

-a
--alsa

-s
--stereo

-d #
--device=#

-c #
--channels=#

(version: 0.233.2.4-2e1f3e1)

12.5 tascar jackio

Play and record wav files via jack.
Usage:

tascar_jackio [options] input.wav [ports [...]]

Options:

-f
--freewheeling

-o #
--output-file=#

-n #
--jack-name=#

-c
--autoconnect

-u
--unlink

-h
--help

-s #
--start=#

-w
--wait

-d #

0.233.2.4-2e1f3e1 TASCAR – User manual

12.6 tascar_levelmeter 133

--duration=#

-t #
--statistics=#

-v
--verbose

(version: 0.233.2.4-2e1f3e1)

12.6 tascar levelmeter

Usage:

tascar_levelmeter [options]

Options:

-h
--help

-j #
--jackname=#

-o #
--osctarget=#

(version: 0.233.2.4-2e1f3e1)

12.7 tascar listsrc

Usage:

tascar_listsrc sessionfile [options]

List external source files (sound files, trajectories, reflectors etc).

Options:

-h
--help

-m
--missing

TASCAR – User manual 0.233.2.4-2e1f3e1

134 CONTENTS

12.8 tascar lsjackp

Usage:

tascar_lsjackp [options]

Options:

-h
--help

-j #
--jackname=#

-o
--output

-i
--input

-p
--physical

-s
--soft

(version: 0.233.2.4-2e1f3e1)

12.9 tascar lslsl

This command line tool outputs a list of available Lab Streaming Layer (LSL) streams.
Usage:

tascar_lslsl [options]

List LSL streams.

Options:

-h
--help

(version: 0.233.2.4-2e1f3e1)

12.10 tascar osc2file

0.233.2.4-2e1f3e1 TASCAR – User manual

12.11 tascar_osc2lsl 135

Usage:

osc2file [options]

To add streams, specify it as ’<path>:<format>’, e.g., ’/path:ff’.
<format> can be ’i’ (integer), ’f’ (32 bit float) or ’s’ (string).

Options:

-h
--help

-a #
--add=#

-o #
--output=#

-p #
--port=#

(version: 0.233.2.4-2e1f3e1)

12.11 tascar osc2lsl

Usage:

osc2lsl [options]

To add streams manually, specify it as ’<path>:<format>’, e.g., ’/path:ff’.
<format> can be ’i’ (integer), ’f’ (32 bit float) or ’s’ (string).

Options:

-h
--help

-a #
--add=#

-n
--noauto

-p #
--port=#

-t
--timestamp

(version: 0.233.2.4-2e1f3e1)

TASCAR – User manual 0.233.2.4-2e1f3e1

136 CONTENTS

12.12 tascar osc jack transport

Usage:

tascar_osc_jack_transport [options]

Options:

-h
--help

-j #
--jackname=#

-a #
--srvaddr=#

-p #
--srvport=#

-l #
--looptime=#

12.13 tascar pdf

Usage:

tascar_pdf -c sessionfile [options]

Options:

-o #
--output=#

-h
--help

-t #
--time=#

-a
--acousticmodel

-0 #
--ismmin=#

-1 #
--ismmax=#

0.233.2.4-2e1f3e1 TASCAR – User manual

12.14 tascar_renderfile 137

12.14 tascar renderfile

This command line tool can be used for rendering the image source model of a single scene
in a TASCAR session with audio input from a sound file and saving the rendered signal to a
sound file. Common usage example:

tascar_renderfile -i input_file.wav -o output_file.wav tascar_scene.tsc

The size of the input file input_file.wav (number of audio channels) has to correspond
with the number of sources in the scene. The size of the file output_file.wav, which
will be created after calling this tool, will correspond to the number of output channels of the
receiver used in the scene. In case of multi-channel output (e.g., speaker based receiver
types), the order follows the order of the channel definition in the TASCAR files. This may
differ from the order of jack ports, because some jack front ends sort ports alphabetically.
Usage:

tascar_renderfile [options] sessionfile

Render a TASCAR session into a sound file.

Options:

-h
--help

-i #
--inputfile=#

-o #
--outputfile=#

-s #
--scene=#

Scene name (or empty to use first scene in session file).

-m #
--channelmap=#

List of output channels (zero-base), or empty to use all.
Example: -m 0-5,8,12

-t #
--starttime=#

-r #
--srate=#

Sample rate in Hz. If input file is provided, then its sample rate is used
instead

TASCAR – User manual 0.233.2.4-2e1f3e1

138 CONTENTS

-u #
--durartion=#

-f #
--fragsize=#

-c
--static

-1 #
--ismmin=#

Minimum order of image source model.

-2 #
--ismmax=#

Maximum order of image source model, or -1 to use value from scene definition.

-v
--verbose

Increase verbosity.

(version: 0.233.2.4-2e1f3e1)

12.15 tascar renderir

This command line tool is used to render the impulse response of a TASCAR scene. A
typical usage example might be

tascar_renderir -o output_file.wav -f 44100 -1 2 tascar_scene.tsc

Here the impulse response is saved in output_file.wav with a sampling rate of 44100
Hz and up to 2nd order image source model.
Usage:

tascar_renderir [options] sessionfile

Render an impulse response of a TASCAR session.

Options:

-h
--help

-s #
--scene=#

Scene name, or empty to select first scene.

-o #
--outputfile=#

0.233.2.4-2e1f3e1 TASCAR – User manual

12.16 tascar_sampler 139

Output sound file.

-t #
--starttime=#

Start time in session corresponding to first output sample.

-l #
--irlength=#

-f #
--srate=#

Sampling rate in Hz. If input file is provided, the sampling rate of the input
file is used.

-0 #
--ismmin=#

Minimum order of image source model.

-1 #
--ismmax=#

Maximum order of image source model, or -1 to use value from scene definition.

-i #
--inchannel=#

Input channel number. This defines from which sound vertex the IR is measured.
Sound vertices are numbered in the order of their appearance in the session
file, starting with zero.

-v
--verbose

(version: 0.233.2.4-2e1f3e1)

12.16 tascar sampler

Usage:

tascar_sampler [options] soundfont [jackname]

Options:

-a #
--srvaddr=#

-p #
--srvport=#

-h
--help

A soundfont is a list of sound file names, one file per line.

TASCAR – User manual 0.233.2.4-2e1f3e1

140 CONTENTS

12.17 tascar sceneskeleton

Usage:

tascar_sceneskeleton [options]

Show a generic TASCAR scene skeleton.

Options:

-h
--help

(version: 0.233.2.4-2e1f3e1)

12.18 tascar showlicenses

Usage:

tascar_showlicenses -c sessionfile [options]

Options:

-h
--help

12.19 tascar spk2obj

Usage:

tascar_spk2obj [options] <layout file>

Options:

-o #
--output=#

-h
--help

(version: 0.233.2.4-2e1f3e1)

0.233.2.4-2e1f3e1 TASCAR – User manual

12.20 tascar_validatetsc 141

12.20 tascar validatetsc

Usage:

tascar_validatetsc -c sessionfile [options]

Options:

-h
--help

-g
--gendoc

-l
--latex

-v
--verbose

12.21 tascar version

Usage:

tascar_version [options]

Show version information.

Options:

-h
--help

(version: 0.233.2.4-2e1f3e1)

TASCAR – User manual 0.233.2.4-2e1f3e1

142 CONTENTS

List of symbols and definitions

symbol dimension variable
t scalar sampled time
N scalar number of receiver output channels
K scalar number of point sources in a scene
L scalar number of diffuse sound fields in a scene

psrc 1× 3 source position
prec 1× 3 receiver position
pspk 1× 3 loudspeaker position in receiver coordinate system

(ϱ, φ, θ) 1× 3 Spherical coordinates, distance ϱ, azimuth φ, elevation θ
D, d N × 4 first order Ambisonics decoder matrix
w, wn 1×N driving weights for point source at relative position prel

z(t), zn(t) 1×N receiver output signal
yk(t) scalar acoustic model output signal for k-th point source
fl(t) 1× 4 first order Ambisonics signal for l-th diffuse sound field
Orec 3× 3 receiver orientation matrix
prel 1× 3 relative source direction prel = O−1

rec(psrc − prec)
T

r = ||prel|| scalar distance between source and receiver

The receiver orientation is defined by

Orec = Ox (OyOz) (18)

Ox =

 1 0 0
0 cos(Ωx) − sin(Ωx)
0 sin(Ωx) cos(Ωx)

 (19)

Oy =

 cos(Ωy) 0 − sin(Ωy)
0 1 0

sin(Ωy) 0 cos(Ωy)

 (20)

Oz =

 cos(Ωy) − sin(Ωy 0
sin(Ωy) cos(Ωy) 0

0 0 1

 (21)

Ôrec =

(
1 0
0 O−1

rec

)
(22)

0.233.2.4-2e1f3e1 TASCAR – User manual

13 Appendix 143

13 Appendix

References

C Phillip Brown and Richard O Duda. A structural model for binaural sound synthesis. IEEE
Transition on Speech and Audio Processing, 6(5):476–488, 1998. doi: 10.1109/89.709673.
URL https://doi.org/10.1109/89.709673.

Olliver Buttler. Optimierung und erweiterung einer effizienten methode zur synthese binau-
raler raumimpulsantworten. MSc thesis, 2018.

Jérôme Daniel. Représentation de champs acoustiques, application à la transmission et à
la reproduction de scènes sonores complexes dans un contexte multimédia. PhD thesis,
Université Pierre et Marie Curie (Paris VI), Paris, 2001.

Florian Denk and Birger Kollmeier. The hearpiece database of individual transfer functions of
an openly available in-the-ear earpiece for hearing device research. https://zenodo.
org/record/3900114, 2020.

Richard O Duda. Modeling head related transfer functions. In Signals, Systems and Com-
puters, 1993. Conference Record of The Twenty-Seventh Asilomar Conference on, pages
996–1000. IEEE, 1993.

Stephan D. Ewert. RAZR. http://www.razrengine.com, 2018.

Angelo Farina. Simultaneous measurement of impulse response and distortion with a swept-
sine technique. In Audio Engineering Society Convention 108, 2 2000.

Jan Goyvaerts. Regular expressions. https://www.regular-expressions.info/,
2019.

Giso Grimm and Tobias Herzke. A framework for dynamic spatial acoustic scene generation
with Ambisonics in low delay realtime. In Frank Neumann, editor, Proceedings of the Linux
Audio Conference, Stanford, CA, USA, 2012. Center for Computer Research in Music and
Acoustics, Stanford University.

Giso Grimm, Joanna Luberadzka, Tobias Herzke, and Volker Hohmann. Toolbox for acoustic
scene creation and rendering (tascar): Render methods and research applications. In
Frank Neumann, editor, Proceedings of the Linux Audio Conference, Mainz, Germany,
2015. Johannes-Gutenberg Universität Mainz.

Giso Grimm, Joanna Luberadzka, and Volker Hohmann. Virtual acoustic environments for
comprehensive evaluation of model based hearing devices. International Journal of Audi-
ology, 2016.

Giso Grimm, Joanna Luberadzka, and Volker Hohmann. A toolbox for rendering virtual
acoustic environments in the context of audiology. Acta Acustica united with Acustica, 105
(3):566–578, 2019. doi: 10.3813/AAA.919337. URL https://doi.org/10.3813/AAA.
919337.

TASCAR – User manual 0.233.2.4-2e1f3e1

https://doi.org/10.1109/89.709673
https://zenodo.org/record/3900114
https://zenodo.org/record/3900114
http://www.razrengine.com
https://www.regular-expressions.info/
https://doi.org/10.3813/AAA.919337
https://doi.org/10.3813/AAA.919337

Aaron Heller and Em Benjamin. The Ambisonic Decoder Toolbox: Extensions for Partial-
Coverage Loudspeaker Arrays. Linux Audio Conference, pages 1–9, 2014. URL http:
//lac.linuxaudio.org/2014/papers/17.pdf.

Aaron J Heller, Eric M Benjamin, and Richard Lee. A Toolkit for the Design of Ambisonic
Decoders. Linux Audio Conference, page 12, 2012. URL http://www.academia.
edu/download/30883409/18.pdf.

Dieter Leckschat, Christian Epe, Malte Kob, Bernhard Seeber, Sascha Spors, Stefan
Weinzierl, and Franz Zotter. DEGA-Memorandum VA 1201 Guidelines for implementing
and documenting audio productions for scientific applications in acoustics, January 2020.
URL https://doi.org/10.5281/zenodo.3597238.

Gerard Llorach, Alun Evans, Josep Blat, Giso Grimm, and Volker Hohmann. Web-based live
speech-driven lip-sync. In VS-Games, Barcelona, Spain, 2016.

Trond Lossius, Pascal Baltazar, and Théo de la Hogue. Dbap–distance-based amplitude
panning. In ICMC, 2009.

Ville Pulkki. Virtual sound source positioning using vector base amplitude panning. J. Audio
Eng. Soc, 45(6):456–466, 1997.

Davide Rocchesso and Julius O Smith. Circulant and elliptic feedback delay networks for
artificial reverberation. IEEE Transactions on Speech and Audio Processing, 5(1):51–63,
1997.

Manfred R Schroeder. Natural Sounding Artificial Reverberation. Journal of the Audio Engi-
neering Society Audio Eng. Soc, 10(3):219–223, 1962.

Fenja Schwark. Data-driven optimization of parameterized head related transfer functions for
the implementation in a real-time virtual acoustic rendering framework. BSc thesis, 2020.

Torben Wendt, Steven van de Par, and Stephan Ewert. A Computationally-Efficient and
Perceptually-Plausible Algorithm for Binaural Room Impulse Response Simulation. Jour-
nal of the Audio Engineering Society, 62(11):748–766, dec 2014. ISSN 15494950.
doi: 10.17743/jaes.2014.0042. URL http://www.aes.org/e-lib/browse.cfm?elib=
17550.

Franz Zotter, Matthias Frank, Matthias Kronlachner, and Jung-Woo Choi. Efficient phantom
source widening and diffuseness in ambisonics. In Proceedings of the EAA Joint Sympo-
sium on Auralization and Ambisonics, 2014.

Examples

1 examples/example_basic.tsc . 8
2 examples/example_multiplescenes.tsc . 11
3 examples/example_profiling.tsc . 13
4 examples/example_vertices.tsc . 21
5 examples/example_diffuse.tsc . 24
6 examples/example_diffuse.tsc . 24

http://lac.linuxaudio.org/2014/papers/17.pdf
http://lac.linuxaudio.org/2014/papers/17.pdf
http://www.academia.edu/download/30883409/18.pdf
http://www.academia.edu/download/30883409/18.pdf
https://doi.org/10.5281/zenodo.3597238
http://www.aes.org/e-lib/browse.cfm?elib=17550
http://www.aes.org/e-lib/browse.cfm?elib=17550

EXAMPLES 145

7 examples/nsp.spk . 43
8 examples/example_nearest.tsc . 47
9 examples/nsp.spk . 47
10 examples/example_diffreverbnew.tsc . 49
11 examples/example_reflectors.tsc . 53
12 examples/example_reflectors.tsc . 54
13 examples/example_hrirconv.tsc . 70
14 examples/example_midictl.tsc . 77
15 examples/example_geopresets.tsc . 87
16 examples/example_audioplugins.tsc . 99

Type N panning diffuse decoding
omni 1 wn = 1 d1,1 = 1

vmic 1 wn = 1 + a(p̃rel,x − 1) d1,1 =
√
2(1− a), d1,2 = a

cardioid 1 wn = 1
2 (cos(φ) + 1) d1,1 = 1

ortf 2 ORTF microphone max rE

amb_3h0v 7 wn =


√
2 n = 1

cos(n2φ) n even
sin(n−1

2 φ) n odd
dn,n = 1, n = {1, 2, 3}

amb_3h3v 16 w =



ww

wy

wx

wz

wv

wt

wr

ws

wu

wq

wo

wm

wk

wl

wn

wp



=



√
2

cos(θ) sin(φ)
cos(θ) cos(φ)

sin(θ)
2wxwy

2wzwy
1
2(3w

2
z − 1)

2wzwx

w2
x − w2

y

(3w2
x − w2

y)wy

2.598076wzwv

0.726184(5w2
z − 1)wy

1
2wz(5w

2
z − 3)

0.726184(5w2
z − 1)wx

2.598076wzwu

(w2
x − 3w2

y)wx



dn,n = 1, n = {1, 2, 3, 4}

neukom_basic user def. wn = 1 + 2
∑order

l=1 cos(lφn)
neukom_inphase user def. wn = cos(0.5φn)

order

hoa2d user def. see Daniel (2001) for details.
nsp user def. w

argmin

{∥∥ prel
∥prel∥

− pspk
∥pspk∥

∥∥} = 1

hann user def. wn =
(
1
2 + 1

2 cos
(
min

{∣∣N
2 φn

∣∣ , π}))γ
vbap, vbap3d user def. see Pulkki (1997) for details.

Table 184: Specification of receiver types. dn,wxyz = 0 except for the given entries. (ϱ, φ, θ)
is the source position in spherical coodinates in the receiver coordinate system. φn is the
azimuthal angular distance between loudspeaker n and the sound source.

TASCAR – User manual 0.233.2.4-2e1f3e1

146 EXAMPLES

audio
plugins

diffuse
sound
fields

audio
plugins

primary
source

audio
plugins

output

receiver
(point sources)

receiver
(diffuse sound fields)

reverb
(point sources)

diffuse
reverberation

output

diffuse inputpoint input
1. copy signals

2. pre-processing plugins

3. update scene geometry

4. update image source positions

5. apply transmission model

6. render point sources

7. render diffuse sound fields

8. post-processing plugins

9. copy signals

trajectories

reflectors

image
source

scattering

Figure 19: Signal flow in the acoustic model.

0.233.2.4-2e1f3e1 TASCAR – User manual

Index

a (XML attribute), 24, 41, 102, 110, 112, 113
a1 (XML attribute), 110
absorption (XML attribute), 51
accscale (XML attribute), 93
active (XML attribute), 14, 26, 63, 67, 90, 106
actor (XML attribute), 85, 89, 92, 93, 96, 97
addparentname (XML attribute), 95
addr (XML attribute), 73
addring (XML attribute), 43
addsndfile (XML element), 24
addsphere (XML attribute), 43
addtime (XML attribute), 75
airabsorption (XML attribute), 20
alivetimeout (XML attribute), 66
allowoscmod (XML attribute), 82
allpass (audio plugin), 99, 100
alpha (XML attribute), 53, 103, 111
alpha_m (XML attribute), 37
alpha_st (XML attribute), 37
alphamin (XML attribute), 34, 35
alphamin_front (XML attribute), 34, 35
alphamin_up (XML attribute), 34, 35
amb1h0v (receiver type), 29
amb1h1v (receiver type), 29
amb3h0v (receiver type), 30
amb3h3v (receiver type), 30
ambdec, 30
amborder (XML attribute), 68
amplitude (XML attribute), 94
angle (XML attribute), 33, 35, 40
animation (XML attribute), 108
ao (XML attribute), 110
aperture (XML attribute), 55
apply_loc (XML attribute), 92, 93
apply_rot (XML attribute), 92, 93
artnetDMX, 72
attribution (XML attribute), 10, 12, 113, 116
attscale (XML attribute), 40
Audio plugins, 99
author (XML element), 12
autoconnect (XML attribute), 69, 112
autoreconnect (XML attribute), 63
autoref (XML attribute), 92, 93

autoref_zonly (XML attribute), 92, 93
avatar (XML attribute), 95
avgdist (XML attribute), 25, 50
axes (XML attribute), 93
axis (XML attribute), 37, 38
az (XML attribute), 42, 63, 73, 121
az0 (XML attribute), 63

bandlevel2osc (audio plugin), 99, 101
bandpass (audio plugin), 99, 101
bandwidth (XML attribute), 101
bass (XML attribute), 69
bassratio (XML attribute), 69
baudrate (XML attribute), 65, 66
beta (XML attribute), 37
bibitem (XML element), 12
boundingbox (XML element), 24, 26
bpb (XML attribute), 110
bpm (XML attribute), 67, 109, 110
broadband (XML attribute), 40
buflen (XML attribute), 70
buttonheight (XML attribute), 87
bypass (XML attribute), 63, 67, 97, 101, 105,

109, 110, 117, 119

c (XML attribute), 14, 33, 35, 39, 40, 49, 51
calib0path (XML attribute), 93
calib1path (XML attribute), 93
calibdate (XML attribute), 43
calibfor (XML attribute), 43
caliblevel (XML attribute), 15, 43, 50, 80, 116,

123
caliblevel_in (XML attribute), 80
calibrate (XML attribute), 42
calibration, 123
camcalibfile (XML attribute), 65
camview (XML attribute), 65
candidates (XML attribute), 97
cardioid (receiver type), 30
ccmsg (XML element), 77
changeonone (XML attribute), 110
channel (XML attribute), 69, 78, 113, 116
channelorder (XML attribute), 29, 51, 113

148 INDEX

channels (XML attribute), 32, 63, 66, 73, 80,
90, 92

charsize (XML attribute), 65, 66
checksum (XML attribute), 43
chmap (receiver type), 31
colbg (XML attribute), 82
colneg (XML attribute), 82
color (XML attribute), 16
colpos (XML attribute), 83
combinegyr (XML attribute), 92, 93
command (XML attribute), 82
compB (XML attribute), 42
connect (XML attribute), 15, 42, 50, 66, 69,

75–77, 80, 112
connect (XML element), 10
connect_out (XML attribute), 80
connectwlan (XML attribute), 79, 92
const (audio plugin), 99, 102
controllers (XML attribute), 66, 76, 77
controltransport (XML attribute), 60
conv (XML attribute), 42
convlabels (XML attribute), 43
convprecalib (XML attribute), 43
copyccpath (XML attribute), 77
copynotepath (XML attribute), 77
copyurl (XML attribute), 77
creator, 18
creator (XML element), 19
criticalload (XML attribute), 67
crownfile (XML attribute), 65

d (XML attribute), 20
damping (XML attribute), 51–53, 68
data (XML attribute), 66
datalogging (module), 58, 59
dataprefix (XML attribute), 67
dataurl (XML attribute), 67
debugpos (receiver type), 32
decay (XML attribute), 68, 106, 112
decaydamping (XML attribute), 112
decayoffset (XML attribute), 112
decaytime (XML attribute), 94
decoder, 30
decoder (XML attribute), 75
decorr (XML attribute), 27, 35, 41, 43
decorr_length (XML attribute), 27, 35, 41, 43
dectype (XML attribute), 46

decwarnthreshold (XML attribute), 46
delay (audio plugin), 99, 102
delay (XML attribute), 39, 42, 102
delaycomp (XML attribute), 25, 50, 109
delayenvelope (XML attribute), 69
delayline (XML attribute), 20
delta-transformation, 19
densitycorr (XML attribute), 43
description (XML element), 14
dest (XML attribute), 10
detune (XML attribute), 112
device (XML attribute), 65, 66, 73, 88
devices (XML attribute), 93
diffup (XML attribute), 33, 45, 46
diffup_delay (XML attribute), 33, 45
diffup_maxorder (XML attribute), 33, 45
diffup_rot (XML attribute), 33, 45
diffuse, 24
diffuse (XML attribute), 25, 50
diffuse (XML element), 49, 99
diffuse_hrtf (XML attribute), 35
diffusegain (XML attribute), 25, 43
diffusegainfront (XML attribute), 36
diffusegainrear (XML attribute), 36
digits (XML attribute), 83
directories, 2
dirgain (module), 58, 62
displaydc (XML attribute), 60
distance (XML attribute), 23, 33, 40, 41, 94
dlocation (XML attribute), 15
dmax (XML attribute), 104
dmin (XML attribute), 104
DMX, 72
dmxval (XML attribute), 74
dorientation (XML attribute), 15
drawradius (XML attribute), 121
driver (XML attribute), 72
dry (XML attribute), 68, 102
dt (XML attribute), 68
dumpmsg (XML attribute), 76, 77
duration (XML attribute), 10, 87
durationbeats (XML attribute), 109
durations (XML attribute), 67
dw (XML attribute), 52, 68
dynamicrange (XML attribute), 107, 108

echoc (module), 58, 63

0.233.2.4-2e1f3e1 TASCAR – User manual

INDEX 149

edgereflection (XML attribute), 52, 53
el (XML attribute), 42, 74, 121
enable (XML attribute), 87
end (XML attribute), 11, 16
endduration (XML attribute), 118
energypath (XML attribute), 107, 108
Entec openDMX, 72
entry (XML element), 69
eogpath (XML attribute), 79, 92
epicycles (actor module), 85
epicycles (module), 84
eqfreq (XML attribute), 42
eqgain (XML attribute), 42
eqstages (XML attribute), 42
equalizer (XML attribute), 38
espheadtracker (XML element), 62

f (XML attribute), 53, 65, 89, 91, 101, 102,
112, 113

f (XML element), 91
f0 (XML attribute), 67, 112
f6db (XML attribute), 23, 40, 41, 63
face, 52
face (XML element), 52, 54
facegroup, 52
facegroup (XML element), 53, 54
faces (XML element), 19, 54
fade_gain (XML attribute), 25, 50
fadeinlen (XML attribute), 105
fadelen (XML attribute), 108
fadeoutlen (XML attribute), 105
failonerror (XML attribute), 10
fakebf (receiver type), 32
falloff (XML attribute), 23–26, 50, 56
fc (XML attribute), 36, 103
fcsub (XML attribute), 43
fcut (XML attribute), 69
fdnorder (XML attribute), 52, 68
feedback (XML attribute), 102, 104
feedbackdelay (audio plugin), 99, 102
fence (audio plugin), 99, 103
fftlen (XML attribute), 69
fig8 (mask plugin), 121
file (XML attribute), 69
file format, 8
fileformat (XML attribute), 60, 70
filter (audio plugin), 99, 103

filterlen (XML attribute), 63
filterperiod (XML attribute), 33, 45
filtershape (XML attribute), 33, 45
first_row_is_timestamp (XML attribute), 78
firstpar (XML attribute), 106
fixcirculantmat (XML attribute), 52
fixture (XML attribute), 73
fixtures (XML attribute), 73
flanger (audio plugin), 99, 104
flipx (XML attribute), 65
flipy (XML attribute), 65
fmax (XML attribute), 101, 111
fmin (XML attribute), 23, 40, 41, 63, 101, 111
foaconv (reverb receiver type), 50
fontscale (XML attribute), 83
forwardstages (XML attribute), 52
fps (XML attribute), 72, 83
fpsden (XML attribute), 75
fpsnum (XML attribute), 75
frange (XML attribute), 106
freefield (XML attribute), 38
freq_end (XML attribute), 34, 35
freq_start (XML attribute), 34, 35
frequency (XML attribute), 94
frequency weighting, 123
fres (XML attribute), 117
fres1 (XML attribute), 110
freso (XML attribute), 110

gain (audio plugin), 99, 104
gain (XML attribute), 15, 42, 50, 67, 69, 80,

81, 103–105, 109, 117, 122
gain_end (XML attribute), 38
gain_st (XML attribute), 38
gaincorr (XML attribute), 35
gainmethod (XML attribute), 52
gainmodel (XML attribute), 20
gainramp (audio plugin), 99, 104
gate (audio plugin), 100, 105
geopresets (actor module), 87
geopresets (module), 84
glabsensor (qualisys), 67
glabsensors (module), 58, 64
globalmask (XML attribute), 25, 50
granularsynth (module), 58, 67
guicenter (XML attribute), 14
guiscale (XML attribute), 14

TASCAR – User manual 0.233.2.4-2e1f3e1

150 INDEX

guitracking (XML attribute), 14
gyrscale (XML attribute), 93

h (XML attribute), 11, 64, 83
hann (speaker based receiver type), 45
hannenv (audio plugin), 100, 105
headless (XML attribute), 60
height (XML attribute), 23, 52
highpass, 103
highpass (XML attribute), 103
highshelf (XML attribute), 37
hoa2d (speaker based receiver type), 45
hoa2d_fuma (receiver type), 33
hoa3d (speaker based receiver type), 46
hoa3d_enc (receiver type), 33
hoafdnrot (module), 58, 68
holdlen (XML attribute), 105
home (XML attribute), 85
hossustain (module), 58, 68
hostname (XML attribute), 73
hrirconv (module), 58, 69
hrirfile (XML attribute), 69
hrtf (receiver type), 34
hue (XML attribute), 106
hue_warp_rot (XML attribute), 72
hue_warp_x (XML attribute), 72
hue_warp_y (XML attribute), 72

i (XML element), 91
id (XML attribute), 14, 16, 20, 63, 67–69, 75,

80, 82, 87, 90
identity (audio plugin), 100, 106
ignorefirst (XML attribute), 60
ignoreorientation (XML attribute), 95
image (XML attribute), 25, 50
importcsv (XML attribute), 17, 18
importraw (XML attribute), 19, 53, 55
in (XML attribute), 69
inchannels (XML attribute), 69
include (XML element), 12, 13
incremental (XML attribute), 90, 92, 95
influence (XML attribute), 90, 92, 95
initcmd (XML attribute), 10
initcmdsleep (XML attribute), 10
input (XML element), 75
inputchannels (XML attribute), 92
inside (XML attribute), 56

intensityvector (receiver type), 36
interpolation (XML attribute), 18
inv (XML attribute), 15, 50, 80
irsname (XML attribute), 51
ishole (XML attribute), 56
ismmax (XML attribute), 20, 25, 50
ismmin (XML attribute), 20, 25, 50
ismorder (XML attribute), 14
itu51 (receiver type), 36

jackrec (module), 58, 70
joystick (actor module), 88
joystick (module), 84

label (XML attribute), 42, 74
layerfadelen (XML attribute), 25, 50
layers (XML attribute), 16, 50, 52, 53
layout (XML attribute), 44, 73, 117
layout (XML element), 43
length (XML attribute), 113
level, 123
level (XML attribute), 63, 111–113
level meter, 72, 123
level2hsv (audio plugin), 100, 106
level2osc (audio plugin), 100, 106
levelmeter_min (XML attribute), 10
levelmeter_mode (XML attribute), 10
levelmeter_range (XML attribute), 10
levelmeter_tc (XML attribute), 10, 80
levelmeter_weight (XML attribute), 10, 80
levelmode (XML attribute), 113
levelpath (XML attribute), 109
levelpattern (XML attribute), 93
levels2osc (module), 58, 72
license (XML attribute), 10, 12, 113, 116
license (XML element), 12
light control, 72
lightctl (module), 58, 72
lightscene (XML element), 73
linearmovement (actor module), 88
linearmovement (module), 84
linearmovement (XML element), 90
linethreshold (XML attribute), 65
lingain (XML attribute), 80, 104
lipsync (audio plugin), 100, 107
lipsync_paper (audio plugin), 100, 107, 108
local (XML attribute), 90, 92, 95

0.233.2.4-2e1f3e1 TASCAR – User manual

INDEX 151

localpos (XML attribute), 15
locationmodulator (actor module), 89
locationmodulator (module), 85
locationvelocity (actor module), 90
locationvelocity (module), 85
locationvelocity (XML element), 88, 90
logdelays (XML attribute), 68
lookatlen (XML attribute), 95
lookatme (audio plugin), 100, 108
loop (XML attribute), 10, 17, 18, 67, 113, 116
loopcrossexp (XML attribute), 113
loopcrosslen (XML attribute), 113
loopmachine (audio plugin), 100, 109
loudspeaker, 42
loudspeakerports (XML attribute), 63
lowcut (XML attribute), 52
lowpass, 103
lrange (XML attribute), 106
lsl (XML element), 62
lsl2osc (module), 58, 74
lslactor (actor module), 90
lslactor (module), 85
lsljacktime (module), 58, 74
lslname (XML attribute), 78
lsltimeout (XML attribute), 60
lsltype (XML attribute), 79
ltcgen (module), 58, 74

m (XML attribute), 75, 89, 91
main window, 9
mainwindow (XML element), 11
mapwindow (XML element), 11
margin (XML attribute), 65
mask, 56
Mask plugins, 121
maskplugin (XML element), 121
master (XML attribute), 73
material (XML attribute), 52, 53
material (XML element), 53
matrix (module), 58, 75
max (XML attribute), 76–78
maxchannels (XML attribute), 73
maxdelay (XML attribute), 102, 104
maxdist (XML attribute), 20, 63, 65
maxframedist (XML attribute), 65
maxgain (XML attribute), 34, 35, 105, 122
maxlen (XML attribute), 51

maxnorm (XML attribute), 88, 97
maxre (XML attribute), 45
maxspeechlevel (XML attribute), 107, 108
maxstep (XML attribute), 19
maxvoices (XML attribute), 112
maxxrunfreq (XML attribute), 67
measureatstart (XML attribute), 63
method (XML attribute), 46, 73
metronome (audio plugin), 100, 109
micarray (receiver type), 36
micports (XML attribute), 63
microphone, 25
midicc2osc (module), 58, 76
midichannel (XML attribute), 112
midictl (module), 58, 76
mididispatch (module), 58, 77
min (XML attribute), 76–78
mingain (XML attribute), 122
minlevel (XML attribute), 20
mixmax (XML attribute), 73
mode (XML attribute), 78, 91, 94, 96, 101,

103, 106
modf (XML attribute), 104
modules, 58
modules (XML element), 10, 13
motionpath (actor module), 90
motionpath (module), 85
msg (XML element), 110
msgapp (XML element), 91
msgdep (XML element), 91
multibeam (mask plugin), 121
multicast (XML attribute), 60, 81
mute (XML attribute), 16, 80, 111, 113, 116
muteinput (XML attribute), 109
muteonstop (XML attribute), 25, 50

name (XML attribute), 10–12, 14, 16, 20, 39,
43, 53, 63, 65, 66, 70, 73, 76, 77,
79–81, 83, 88, 92–94, 97, 113, 116

navigation mesh, 19
navmesh, 19
nearfieldlimit (XML attribute), 20
nearsensor (actor module), 91
nearsensor (module), 85
newpath (XML attribute), 80
noise (audio plugin), 100, 110
noisepattern (XML attribute), 72

TASCAR – User manual 0.233.2.4-2e1f3e1

152 INDEX

normalization (XML attribute), 29, 51, 113
noshell (XML attribute), 82
note (XML attribute), 78
notemsg (XML element), 77
nrep (XML attribute), 63
nsp (speaker based receiver type), 47
nstages (XML attribute), 101
numbeams (XML attribute), 122
numgrains (XML attribute), 67
numiter (XML attribute), 52

object, 14
objects (XML attribute), 73
objval (XML attribute), 73
objw (XML attribute), 73
obstacle, 55
offset (XML attribute), 51, 65, 66, 119
omega (XML attribute), 34, 35, 37
omega_end (XML attribute), 38
omega_front (XML attribute), 34, 35
omega_st (XML attribute), 38
omega_up (XML attribute), 34, 35
omni (receiver type), 40
on_alive (XML attribute), 66
on_timeout (XML attribute), 66
onchangecount (XML attribute), 107, 108
oncritical (XML attribute), 67
onload (XML attribute), 43
onset (XML attribute), 112
onsetdetector (audio plugin), 100, 111
ontop (XML attribute), 64
onunload (XML attribute), 43, 82
order (XML attribute), 33, 34, 45, 46
orientation, 18
orientation (XML attribute), 88
orientation (XML element), 19
orientationmodulator (actor module), 91
orientationmodulator (module), 85
orientationname (XML attribute), 95
origin (XML attribute), 103
ortf (receiver type), 40
ORTF stereo microphone, 40
osc (XML element), 62, 88
osc2lsl (module), 58, 78
oscactor (actor module), 91
oscactor (module), 85
oscale (XML attribute), 95

osceog (module), 58, 79
oscevents (module), 59, 79
oscheadtracker (actor module), 92
oscheadtracker (module), 85
oscinput (XML attribute), 77
oscjacktime (module), 59, 79
oscrelay (module), 59, 80
oscs (XML element), 60
oscserver (module), 59, 80
out (XML attribute), 69
outchannels (XML attribute), 69
output (XML element), 75
outputdir (XML attribute), 60
outputlayers (XML attribute), 50
ovheadtracker (actor module), 93
ovheadtracker (module), 85

p0 (XML attribute), 89, 91
param (XML attribute), 78
parent (XML attribute), 15, 73, 91
partialweights (XML attribute), 112
path (XML attribute), 60, 66, 70, 73, 76, 78–

80, 82, 85, 88, 91, 92, 101, 106–108,
110, 111, 117

paths (XML attribute), 109
pattern (XML attribute), 70, 72, 77, 91, 94
pendulum (actor module), 93
pendulum (module), 85
period (XML attribute), 105, 111
phi0 (XML attribute), 96
phi1 (XML attribute), 96
pink (audio plugin), 100, 111
pitches (XML attribute), 67
planewave (XML attribute), 49
playonload (XML attribute), 10
plugins (XML element), 24, 99
point (XML attribute), 25
ponset (XML attribute), 67
port (XML attribute), 60, 73, 81
port (XML element), 84
ports (XML attribute), 71, 83
pos (XML attribute), 88
pos2lsl (actor module), 94
pos2lsl (module), 85
pos2osc (actor module), 94
pos2osc (module), 85
pos_offset (XML attribute), 109

0.233.2.4-2e1f3e1 TASCAR – User manual

INDEX 153

pos_onset (XML attribute), 109
position, 16
position (XML attribute), 39, 88, 114, 116
position (XML element), 19–21
postgain (XML attribute), 119
precalc (XML attribute), 118
predicate (XML attribute), 61, 90
prefilt (XML attribute), 52, 68
prefix (XML attribute), 67, 71, 74, 83
pregain (XML attribute), 119
premax (XML attribute), 63
preset (XML attribute), 88
preset (XML element), 87
prewarpingmode (XML attribute), 35
profiler, 13, 99
profilingpath (XML attribute), 10
proxy_airabsorption (XML attribute), 25, 50
proxy_delay (XML attribute), 25, 50
proxy_direction (XML attribute), 25, 50
proxy_gain (XML attribute), 25, 50
proxy_is_relative (XML attribute), 25, 50
proxy_position (XML attribute), 25, 50
psustain (XML attribute), 67
pulse (audio plugin), 100, 112

Q (XML attribute), 38, 103
q (XML attribute), 117
q1 (XML attribute), 110
Q_notch (XML attribute), 34, 35
qo (XML attribute), 110
QTM, 67
qtmurl (XML attribute), 67, 95
qualisys, 67
Qualisys Track Manager, 67
qualisystracker (actor module), 95
qualisystracker (module), 85

r (XML attribute), 42, 101, 103
radius (XML attribute), 35, 91
ramp1 (XML attribute), 105
ramp2 (XML attribute), 105
rampend (XML attribute), 114
ramplen (XML attribute), 109
rampstart (XML attribute), 114
range (XML attribute), 65, 66, 103
range (XML element), 10
rawpath (XML attribute), 92

rawsrvchannels (XML attribute), 72
rawsrvhost (XML attribute), 72
rawsrvpath (XML attribute), 72
rawsrvport (XML attribute), 72
rawsrvproto (XML attribute), 73
receiver, 25
receiver (XML element), 49, 99
receiver type, 28
reflectivity (XML attribute), 52, 53
relaunch (XML attribute), 82
relaunchwait (XML attribute), 82
remaining (XML attribute), 83
required (XML attribute), 61
requirefragsize (XML attribute), 10
requiresrate (XML attribute), 10
resample (XML attribute), 114
retval (XML attribute), 79, 80
reverb (XML element), 49
rigid (XML attribute), 95
rot (XML attribute), 88
rotator (actor module), 95
rotator (module), 85
rotator (XML element), 95
rotpath (XML attribute), 92, 93
roturl (XML attribute), 92, 93
route (module), 59, 80
rx (XML attribute), 20
ry (XML attribute), 20
rz (XML attribute), 20

s (XML element), 91
sampledorientation (XML attribute), 15, 90
sampleformat (XML attribute), 71
sampler (module), 59, 81
saturation (XML attribute), 106, 119
savedec (XML attribute), 46
savegains (module), 59, 81
scale (XML attribute), 16, 65, 66, 107, 108,

118
scatterdamping (XML attribute), 25, 50
scattering (XML attribute), 52, 53
scatterreflections (XML attribute), 25, 50
scatterspread (XML attribute), 26, 50
scatterstructuresize (XML attribute), 26, 50
scene, 13
scene (XML element), 14
secpath (XML attribute), 82

TASCAR – User manual 0.233.2.4-2e1f3e1

154 INDEX

selectivity (XML attribute), 122
send_only_quaternion (XML attribute), 93
sendmode (XML attribute), 107, 108
sendsessiontime (XML attribute), 82
sendsounds (XML attribute), 95
sendsquared (XML attribute), 73
sendwhilestopped (XML attribute), 101, 107
session, 10
session (XML element), 10, 99, 128
sessiontime (audio plugin), 100, 112
shoebox (XML attribute), 53
shoeboxwalls (XML attribute), 53
showgui (XML attribute), 87
showspatialerror (XML attribute), 44
showtc (XML attribute), 83
side (XML attribute), 111
simplecontroller (actor module), 97
simplecontroller (module), 85
simplefdn (reverb receiver type), 51
simplesynth (audio plugin), 100, 112
sincorder (XML attribute), 20, 33, 35, 39, 41
sincsampling (XML attribute), 35, 39, 41
sine (audio plugin), 100, 113
size (XML attribute), 20, 24, 26, 56, 60, 79
skip (XML attribute), 79, 95, 101, 106, 107
sleep (module), 59, 81
sleep (XML attribute), 81, 82
slope (XML attribute), 105
smooth (XML attribute), 92, 93
smoothing (XML attribute), 107, 108
snapangle (actor module), 97
snapangle (module), 85
sndfile (audio plugin), 100, 113
sndfile (XML element), 21
sndfileasync (audio plugin), 100, 116
sofa_file (XML attribute), 43
solo (XML attribute), 16, 80
sound, 20
sound (XML element), 20, 31, 81, 99
source, 19
source (XML element), 19
source_id (XML attribute), 79
sources (XML attribute), 32
spatialerrorpos (XML attribute), 44
speaker (XML element), 42, 44
speechactivity (audio plugin), 100, 116
sphere (XML attribute), 38

spkcalib (audio plugin), 100, 117
spksim (audio plugin), 100, 117
srate (XML attribute), 79
src (XML attribute), 10
srcobj (XML attribute), 97
srv_addr (XML attribute), 10, 80
srv_port (XML attribute), 10, 80
srv_proto (XML attribute), 10, 60, 80
start (XML attribute), 11, 15, 114
start_angle (XML attribute), 33
startangle_front (XML attribute), 34, 35
startangle_notch (XML attribute), 34, 35
startangle_up (XML attribute), 34, 35
startduration (XML attribute), 118
startlock (XML attribute), 66
startpreset (XML attribute), 87
startswith (XML attribute), 80
starttime (XML attribute), 94
starturl (XML attribute), 10
steady (XML attribute), 105
stereo, 40
stereo (speaker based receiver type), 48
stop_angle (XML attribute), 33
streams (XML attribute), 74, 84
strmsg (XML attribute), 107, 108
sub (XML element), 42
subwoofer, 42
sync (XML attribute), 110
system (module), 59, 82
systime (module), 59, 82

t (XML attribute), 68
t0 (XML attribute), 67, 89, 96, 105
t1 (XML attribute), 96
t60 (XML attribute), 52
targetaddr (XML attribute), 85
targetip (XML attribute), 79, 92
tascar_cli, 130
tascar_getcalibfor, 130
tascar_gpx2csv, 131
tascar_hdspmixer, 131
tascar_jackio, 132
tascar_levelmeter, 133
tascar_listsrc, 133
tascar_lsjackp, 134
tascar_lslsl, 134
tascar_osc2file, 134

0.233.2.4-2e1f3e1 TASCAR – User manual

INDEX 155

tascar_osc2lsl, 135
tascar_osc_jack_transport, 136
tascar_pdf, 136
tascar_renderfile, 137
tascar_renderir, 138
tascar_sampler, 139
tascar_sceneskeleton, 140
tascar_showlicenses, 140
tascar_spk2obj, 140
tascar_validatetsc, 141
tascar_version, 141
tascartime (XML attribute), 90
tau (XML attribute), 36, 106, 107, 109, 111
tau_envelope (XML attribute), 69
tau_sustain (XML attribute), 69
tauenv (XML attribute), 117
taumin (XML attribute), 111
tauonset (XML attribute), 117
taurms (XML attribute), 105
tautrack (XML attribute), 105
tctimeout (XML attribute), 61
theta_end (XML attribute), 38
theta_st (XML attribute), 37, 38
thetamin (XML attribute), 34, 35
threaded (XML attribute), 95, 101, 107, 108
threshold (XML attribute), 83, 105, 107–109,

111, 117
thresholdpath (XML attribute), 109
tiltmap (XML attribute), 93
tiltpath (XML attribute), 93
tilturl (XML attribute), 93
timedcmdpipe (XML attribute), 82
timedisplay (module), 59, 82
timedprefix (XML attribute), 82
timeout (XML attribute), 66, 67, 83, 84, 95
times (XML attribute), 83
touchosc (module), 59, 83
tracegui (actor module), 97
tracegui (module), 85
transitionsonly (XML attribute), 117
transmission (XML attribute), 56
transport (XML attribute), 94, 95, 114, 116
transportgui (module), 59, 83
transportramp (audio plugin), 100, 118
triggered (XML attribute), 82, 95, 114
trimstart (XML attribute), 80
truncate_forward (XML attribute), 52

ttl (XML attribute), 72, 79, 91–94
tubesim (audio plugin), 100, 118
type (XML attribute), 20, 26, 38, 50, 121, 122

unit (XML attribute), 65
universe (XML attribute), 72
unlock (XML attribute), 87
url (XML attribute), 70, 72, 74, 76, 79, 80,

91–94, 101, 106–109, 111, 117
url_critical (XML attribute), 64
url_warning (XML attribute), 64
use_calib (XML attribute), 65
use_transport (XML attribute), 85, 111
useall (XML attribute), 47
usecalib (XML attribute), 73
usedouble (XML attribute), 60
uselsl (XML attribute), 67
usetransport (XML attribute), 60, 71
usewallclock (XML attribute), 75

v (XML attribute), 89
vbap (speaker based receiver type), 48
vbap3d (speaker based receiver type), 48
vcf (XML attribute), 52
vertex, 20
vertices (XML attribute), 52, 53
virtual microphone, 25
vmic (receiver type), 41
vocalTract (XML attribute), 107, 108
volume (XML attribute), 75
volumetric (XML attribute), 26, 50
volumetric rendering, 27
volumetricgainwithdistance (XML attribute),

26, 50
vr (XML attribute), 97
vt60 (XML attribute), 52
vx (XML attribute), 97
vy (XML attribute), 97
vz (XML attribute), 97

w (XML attribute), 11, 64, 68, 83, 96
waitforjackport (module), 59, 83
waitforlslstream (module), 59, 84
warnfragsize (XML attribute), 10
warnload (XML attribute), 67
warnsrate (XML attribute), 10
weight (XML attribute), 106
weighting (XML attribute), 114

TASCAR – User manual 0.233.2.4-2e1f3e1

156 INDEX

weights (XML attribute), 107
wet (XML attribute), 67–69, 103, 104, 118,

119
wexp (XML attribute), 45
wfs (speaker based receiver type), 48
width (XML attribute), 23, 53, 87
wlanpass (XML attribute), 79, 92
wlanssid (XML attribute), 79, 92
wlen (XML attribute), 68, 69
wndsqrt (XML attribute), 23

x (XML attribute), 11, 20, 64, 83
x_ax (XML attribute), 88
x_max (XML attribute), 88
x_min (XML attribute), 88
x_scale (XML attribute), 88
x_threshold (XML attribute), 88
xyzgain (XML attribute), 26, 43

y (XML attribute), 11, 20, 64, 83

z (XML attribute), 20
zshift (XML attribute), 19

0.233.2.4-2e1f3e1 TASCAR – User manual

INDEX 157

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor,
Boston, MA 02110-1301, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom to
share and change free software–to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these
rights or to ask you to surrender the rights. These restrictions translate to certain responsi-
bilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow. TERMS
AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The "Program", below, refers to any such program or work, and a "work based on the Pro-
gram" means either the Program or any derivative work under copyright law: that is to say,

TASCAR – User manual 0.233.2.4-2e1f3e1

158 INDEX

a work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in the
term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the
files and the date of any change. b) You must cause any work that you distribute or publish,
that in whole or in part contains or is derived from the Program or any part thereof, to be
licensed as a whole at no charge to all third parties under the terms of this License. c) If the
modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an an-
nouncement including an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may redistribute the program
under these conditions, and telling the user how to view a copy of this License. (Exception:
if the Program itself is interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of derivative
or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object

0.233.2.4-2e1f3e1 TASCAR – User manual

INDEX 159

code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or, b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the corresponding source code, to
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or, c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is allowed only for noncommercial
distribution and only if you received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to
it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition files, plus the scripts used to control
compilation and installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in either source or
binary form) with the major components (compiler, kernel, and so on) of the operating system
on which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a desig-
nated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to
copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing
else grants you permission to modify or distribute the Program or its derivative works. These
actions are prohibited by law if you do not accept this License. Therefore, by modifying or
distributing the Program (or any work based on the Program), you indicate your acceptance
of this License to do so, and all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then

TASCAR – User manual 0.233.2.4-2e1f3e1

160 INDEX

as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License
would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right
claims or to contest validity of any such claims; this section has the sole purpose of protecting
the integrity of the free software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of software
distributed through that system in reliance on consistent application of that system; it is up
to the author/donor to decide if he or she is willing to distribute software through any other
system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by
patents or by copyrighted interfaces, the original copyright holder who places the Program
under this License may add an explicit geographical distribution limitation excluding those
countries, so that distribution is permitted only in or among countries not thus excluded. In
such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software which
is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of pre-
serving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WAR-
RANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EX-
CEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR
OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PRO-

0.233.2.4-2e1f3e1 TASCAR – User manual

INDEX 161

GRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY
AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU
FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUEN-
TIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INAC-
CURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR
OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. END
OF TERMS AND CONDITIONS How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source file to most effectively convey the exclusion of warranty; and each file should
have at least the "copyright" line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does. Copyright (C) yyyy name of
author

This program is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an inter-
active mode:

Gnomovision version 69, Copyright (C) year name of author Gnomovision comes with AB-
SOLUTELY NO WARRANTY; for details type ‘show w’. This is free software, and you are
welcome to redistribute it under certain conditions; type ‘show c’ for details.

The hypothetical commands ‘show w’ and ‘show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other
than ‘show w’ and ‘show c’; they could even be mouse-clicks or menu items–whatever suits
your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a "copyright disclaimer" for the program, if necessary. Here is a sample; alter the

TASCAR – User manual 0.233.2.4-2e1f3e1

162 INDEX

names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program ‘Gnomovision’ (which
makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU
Lesser General Public License instead of this License.

0.233.2.4-2e1f3e1 TASCAR – User manual

	Introduction
	General remarks and invocation
	Keyboard shortcuts in the main window
	Network remote control via OSC
	Optimization of the operating system for audio processing
	Overwriting application default values
	Content ownership rights

	Scene Definition
	Top level elements
	The <session>...</session> element
	The <scene>...</scene> element

	Objects
	Common attributes of objects
	Common sub-elements of objects
	The <source>...</source> element
	The <diffuse .../> element
	The <receiver .../> element
	Receiver types
	Loudspeaker-based receiver types
	Adding diffuse reverberation: <reverb .../>
	Reflectors: <face .../> and <facegroup .../> elements
	Obstacles: <obstacle .../> element
	Masks: <mask ../> element

	General purpose modules
	datalogging
	dirgain
	echoc
	glabsensors
	granularsynth
	hoafdnrot
	hossustain
	hrirconv
	jackrec
	levels2osc
	lightctl
	lsl2osc
	lsljacktime
	ltcgen
	matrix
	midicc2osc
	midictl
	mididispatch
	osc2lsl
	osceog
	oscevents
	oscjacktime
	oscrelay
	oscserver
	route
	sampler
	savegains
	sleep
	system
	systime
	timedisplay
	touchosc
	transportgui
	waitforjackport
	waitforlslstream

	Actor modules
	epicycles
	geopresets
	joystick
	linearmovement
	locationmodulator
	locationvelocity
	lslactor
	motionpath
	nearsensor
	orientationmodulator
	oscactor
	oscheadtracker
	ovheadtracker
	pendulum
	pos2lsl
	pos2osc
	qualisystracker
	rotator
	simplecontroller
	snapangle
	tracegui

	Audio plugins
	allpass
	bandlevel2osc
	bandpass
	const
	delay
	feedbackdelay
	fence
	filter
	flanger
	gain
	gainramp
	gate
	hannenv
	identity
	level2hsv
	level2osc
	lipsync
	lipsync_paper
	lookatme
	loopmachine
	metronome
	noise
	onsetdetector
	pink
	pulse
	sessiontime
	simplesynth
	sine
	sndfile
	sndfileasync
	speechactivity
	spkcalib
	spksim
	transportramp
	tubesim

	Spatial mask plugins
	fig8
	multibeam

	Calibration and level metering
	Calibrating loudspeaker layouts with tascar_spkcalib

	Interfacing from MATLAB and GNU/Octave
	tascar_ctl
	generate_scene
	tascar_jackio
	tascar_ir_measure
	send_osc

	Command line interfaces
	tascar_cli
	tascar_getcalibfor
	tascar_gpx2csv
	tascar_hdspmixer
	tascar_jackio
	tascar_levelmeter
	tascar_listsrc
	tascar_lsjackp
	tascar_lslsl
	tascar_osc2file
	tascar_osc2lsl
	tascar_osc_jack_transport
	tascar_pdf
	tascar_renderfile
	tascar_renderir
	tascar_sampler
	tascar_sceneskeleton
	tascar_showlicenses
	tascar_spk2obj
	tascar_validatetsc
	tascar_version

	Appendix

