-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest_spheropolyhedron.py
160 lines (126 loc) · 5.01 KB
/
test_spheropolyhedron.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
# Copyright (c) 2015-2025 The Regents of the University of Michigan.
# This file is from the coxeter project, released under the BSD 3-Clause License.
import numpy as np
import pytest
from hypothesis import given, settings
from hypothesis.strategies import floats
from conftest import make_sphero_cube
from coxeter.shapes import ConvexSpheropolyhedron
@given(radius=floats(0.1, 1))
def test_volume(radius):
sphero_cube = make_sphero_cube(radius=radius)
v_cube = 1
v_sphere = (4 / 3) * np.pi * radius**3
v_cyl = 12 * (np.pi * radius**2) / 4
v_face = sphero_cube.polyhedron.surface_area * radius
assert np.isclose(sphero_cube.volume, v_cube + v_sphere + v_face + v_cyl)
def test_volume_polyhedron(convex_cube, cube_points):
"""Ensure that zero radius gives the same result as a polyhedron."""
sphero_cube = make_sphero_cube(radius=0)
assert np.isclose(sphero_cube.volume, convex_cube.volume)
@given(value=floats(0.1, 1))
def test_set_volume(value):
sphero_cube = make_sphero_cube(radius=0)
sphero_cube.volume = value
assert np.isclose(sphero_cube.volume, value)
@settings(deadline=1000)
@given(radius=floats(0.1, 1))
def test_surface_area(radius):
sphero_cube = make_sphero_cube(radius=radius)
sa_cube = 6
sa_sphere = 4 * np.pi * radius**2
sa_cyl = 12 * (2 * np.pi * radius) / 4
assert np.isclose(sphero_cube.surface_area, sa_cube + sa_sphere + sa_cyl)
@given(value=floats(0.1, 1))
def test_set_surface_area(value):
sphero_cube = make_sphero_cube(radius=0)
sphero_cube.surface_area = value
assert np.isclose(sphero_cube.surface_area, value)
def test_surface_area_polyhedron(convex_cube):
"""Ensure that zero radius gives the same result as a polyhedron."""
sphero_cube = make_sphero_cube(radius=0)
assert np.isclose(sphero_cube.surface_area, convex_cube.surface_area)
@given(radius=floats(0.1, 1))
def test_mean_curvature(radius):
sphero_cube = make_sphero_cube(radius=radius)
h_cube = 3 / 4
h_sphere = radius
assert np.isclose(sphero_cube.mean_curvature, h_cube + h_sphere)
def test_mean_curvature_polyhedron(convex_cube, cube_points):
"""Ensure that zero radius gives the same result as a polyhedron."""
sphero_cube = make_sphero_cube(radius=0)
assert np.isclose(sphero_cube.mean_curvature, convex_cube.mean_curvature)
@given(value=floats(0.1, 1))
def test_set_mean_curvature(value):
sphero_cube = make_sphero_cube(radius=0)
sphero_cube.mean_curvature = value
assert np.isclose(sphero_cube.mean_curvature, value)
@given(r=floats(0, 1.0))
def test_radius_getter_setter(r):
sphero_cube = make_sphero_cube(radius=r)
assert sphero_cube.radius == r
sphero_cube.radius = r + 1
assert sphero_cube.radius == r + 1
@given(r=floats(-1000, -1))
def test_invalid_radius(r):
with pytest.raises(ValueError):
make_sphero_cube(radius=r)
@settings(deadline=1000)
@given(r=floats(-1000, -1))
def test_invalid_radius_setter(r):
sphero_cube = make_sphero_cube(1)
with pytest.raises(ValueError):
sphero_cube.radius = r
def test_inside_boundaries():
sphero_cube = make_sphero_cube(radius=1)
points_inside = [
[0, 0, 0],
[1, 1, 1],
[-0.01, -0.01, -0.01],
[2, 0.5, 0.5],
[2, 1, 0.5],
[0.5, -0.7, -0.7],
[-0.57, -0.57, -0.57],
]
points_outside = [
[-0.99, -0.99, -0.99],
[-1.01, -1.01, -1.01],
[2.01, 0.5, 0.5],
[2.01, 1, 0.5],
[0.5, -0.99, -0.99],
[0.5, -1.01, -1.01],
[2, -0.7, -0.7],
]
assert np.all(sphero_cube.is_inside(points_inside))
assert np.all(~sphero_cube.is_inside(points_outside))
assert np.all(sphero_cube.is_inside(sphero_cube.polyhedron.vertices))
sphero_cube.polyhedron.center = [0, 0, 0]
verts = sphero_cube.polyhedron.vertices
# Points are inside the convex hull
assert np.all(sphero_cube.is_inside(verts * 0.99))
# Points are outside the convex hull but inside the spherical caps
assert np.all(sphero_cube.is_inside(verts * 1.01))
# Points are outside the spherical caps
assert np.all(~sphero_cube.is_inside(verts * 3))
# Points are on the very corners of the spherical caps
assert np.all(sphero_cube.is_inside(verts * (1 + 2 * np.sqrt(1 / 3))))
# Points are just outside the very corners of the spherical caps
assert np.all(~sphero_cube.is_inside(verts * (1 + 2 * np.sqrt(1 / 3) + 1e-6)))
def test_repr():
sphero_cube = make_sphero_cube(radius=1)
assert str(sphero_cube), str(eval(repr(sphero_cube)))
@pytest.mark.xfail(reason="Maximum rounding radius is shape-dependent.")
@given(r=floats(0.01, 1.0))
def test_to_hoomd(poly, r):
poly.centroid = [0, 0, 0]
poly = ConvexSpheropolyhedron(poly.vertices, r)
dict_keys = ["vertices", "centroid", "sweep_radius", "volume"]
dict_vals = [
poly.vertices,
[0, 0, 0],
poly.radius,
poly.volume,
]
hoomd_dict = poly.to_hoomd()
for key, val in zip(dict_keys, dict_vals):
assert np.allclose(hoomd_dict[key], val), f"{key}"