-
Notifications
You must be signed in to change notification settings - Fork 18k
/
Copy pathrewrite.go
1534 lines (1328 loc) · 43.4 KB
/
rewrite.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package rangefunc rewrites range-over-func to code that doesn't use range-over-funcs.
Rewriting the construct in the front end, before noder, means the functions generated during
the rewrite are available in a noder-generated representation for inlining by the back end.
# Theory of Operation
The basic idea is to rewrite
for x := range f {
...
}
into
f(func(x T) bool {
...
})
But it's not usually that easy.
# Range variables
For a range not using :=, the assigned variables cannot be function parameters
in the generated body function. Instead, we allocate fake parameters and
start the body with an assignment. For example:
for expr1, expr2 = range f {
...
}
becomes
f(func(#p1 T1, #p2 T2) bool {
expr1, expr2 = #p1, #p2
...
})
(All the generated variables have a # at the start to signal that they
are internal variables when looking at the generated code in a
debugger. Because variables have all been resolved to the specific
objects they represent, there is no danger of using plain "p1" and
colliding with a Go variable named "p1"; the # is just nice to have,
not for correctness.)
It can also happen that there are fewer range variables than function
arguments, in which case we end up with something like
f(func(x T1, _ T2) bool {
...
})
or
f(func(#p1 T1, #p2 T2, _ T3) bool {
expr1, expr2 = #p1, #p2
...
})
# Return
If the body contains a "break", that break turns into "return false",
to tell f to stop. And if the body contains a "continue", that turns
into "return true", to tell f to proceed with the next value.
Those are the easy cases.
If the body contains a return or a break/continue/goto L, then we need
to rewrite that into code that breaks out of the loop and then
triggers that control flow. In general we rewrite
for x := range f {
...
}
into
{
var #next int
f(func(x T1) bool {
...
return true
})
... check #next ...
}
The variable #next is an integer code that says what to do when f
returns. Each difficult statement sets #next and then returns false to
stop f.
A plain "return" rewrites to {#next = -1; return false}.
The return false breaks the loop. Then when f returns, the "check
#next" section includes
if #next == -1 { return }
which causes the return we want.
Return with arguments is more involved, and has to deal with
corner cases involving panic, defer, and recover. The results
of the enclosing function or closure are rewritten to give them
names if they don't have them already, and the names are assigned
at the return site.
func foo() (#rv1 A, #rv2 B) {
{
var (
#next int
)
f(func(x T1) bool {
...
{
// return a, b
#rv1, #rv2 = a, b
#next = -1
return false
}
...
return true
})
if #next == -1 { return }
}
# Checking
To permit checking that an iterator is well-behaved -- that is, that
it does not call the loop body again after it has returned false or
after the entire loop has exited (it might retain a copy of the body
function, or pass it to another goroutine) -- each generated loop has
its own #stateK variable that is used to check for permitted call
patterns to the yield function for a loop body.
The state values are:
abi.RF_DONE = 0 // body of loop has exited in a non-panic way
abi.RF_READY = 1 // body of loop has not exited yet, is not running
abi.RF_PANIC = 2 // body of loop is either currently running, or has panicked
abi.RF_EXHAUSTED = 3 // iterator function call, e.g. f(func(x t){...}), returned so the sequence is "exhausted".
abi.RF_MISSING_PANIC = 4 // used to report errors.
The value of #stateK transitions
(1) before calling the iterator function,
var #stateN = abi.RF_READY
(2) after the iterator function call returns,
if #stateN == abi.RF_PANIC {
panic(runtime.panicrangestate(abi.RF_MISSING_PANIC))
}
#stateN = abi.RF_EXHAUSTED
(3) at the beginning of the iteration of the loop body,
if #stateN != abi.RF_READY { #stateN = abi.RF_PANIC ; runtime.panicrangestate(#stateN) }
#stateN = abi.RF_PANIC
// This is slightly rearranged below for better code generation.
(4) when loop iteration continues,
#stateN = abi.RF_READY
[return true]
(5) when control flow exits the loop body.
#stateN = abi.RF_DONE
[return false]
For example:
for x := range f {
...
if ... { break }
...
}
becomes
{
var #state1 = abi.RF_READY
f(func(x T1) bool {
if #state1 != abi.RF_READY { #state1 = abi.RF_PANIC; runtime.panicrangestate(#state1) }
#state1 = abi.RF_PANIC
...
if ... { #state1 = abi.RF_DONE ; return false }
...
#state1 = abi.RF_READY
return true
})
if #state1 == abi.RF_PANIC {
// the code for the loop body did not return normally
panic(runtime.panicrangestate(abi.RF_MISSING_PANIC))
}
#state1 = abi.RF_EXHAUSTED
}
# Nested Loops
So far we've only considered a single loop. If a function contains a
sequence of loops, each can be translated individually. But loops can
be nested. It would work to translate the innermost loop and then
translate the loop around it, and so on, except that there'd be a lot
of rewriting of rewritten code and the overall traversals could end up
taking time quadratic in the depth of the nesting. To avoid all that,
we use a single rewriting pass that handles a top-most range-over-func
loop and all the range-over-func loops it contains at the same time.
If we need to return from inside a doubly-nested loop, the rewrites
above stay the same, but the check after the inner loop only says
if #next < 0 { return false }
to stop the outer loop so it can do the actual return. That is,
for range f {
for range g {
...
return a, b
...
}
}
becomes
{
var (
#next int
)
var #state1 = abi.RF_READY
f(func() bool {
if #state1 != abi.RF_READY { #state1 = abi.RF_PANIC; runtime.panicrangestate(#state1) }
#state1 = abi.RF_PANIC
var #state2 = abi.RF_READY
g(func() bool {
if #state2 != abi.RF_READY { #state2 = abi.RF_PANIC; runtime.panicrangestate(#state2) }
...
{
// return a, b
#rv1, #rv2 = a, b
#next = -1
#state2 = abi.RF_DONE
return false
}
...
#state2 = abi.RF_READY
return true
})
if #state2 == abi.RF_PANIC {
panic(runtime.panicrangestate(abi.RF_MISSING_PANIC))
}
#state2 = abi.RF_EXHAUSTED
if #next < 0 {
#state1 = abi.RF_DONE
return false
}
#state1 = abi.RF_READY
return true
})
if #state1 == abi.RF_PANIC {
panic(runtime.panicrangestate(abi.RF_MISSING_PANIC))
}
#state1 = abi.RF_EXHAUSTED
if #next == -1 {
return
}
}
# Labeled break/continue of range-over-func loops
For a labeled break or continue of an outer range-over-func, we
use positive #next values.
Any such labeled break or continue
really means "do N breaks" or "do N breaks and 1 continue".
The positive #next value tells which level of loop N to target
with a break or continue, where perLoopStep*N means break out of
level N and perLoopStep*N-1 means continue into level N. The
outermost loop has level 1, therefore #next == perLoopStep means
to break from the outermost loop, and #next == perLoopStep-1 means
to continue the outermost loop.
Loops that might need to propagate a labeled break or continue
add one or both of these to the #next checks:
// N == depth of this loop, one less than the one just exited.
if #next != 0 {
if #next >= perLoopStep*N-1 { // break or continue this loop
if #next >= perLoopStep*N+1 { // error checking
// TODO reason about what exactly can appear
// here given full or partial checking.
runtime.panicrangestate(abi.RF_DONE)
}
rv := #next & 1 == 1 // code generates into #next&1
#next = 0
return rv
}
return false // or handle returns and gotos
}
For example (with perLoopStep == 2)
F: for range f { // 1, 2
for range g { // 3, 4
for range h {
...
break F
...
...
continue F
...
}
}
...
}
becomes
{
var #next int
var #state1 = abi.RF_READY
f(func() { // 1,2
if #state1 != abi.RF_READY { #state1 = abi.RF_PANIC; runtime.panicrangestate(#state1) }
#state1 = abi.RF_PANIC
var #state2 = abi.RF_READY
g(func() { // 3,4
if #state2 != abi.RF_READY { #state2 = abi.RF_PANIC; runtime.panicrangestate(#state2) }
#state2 = abi.RF_PANIC
var #state3 = abi.RF_READY
h(func() { // 5,6
if #state3 != abi.RF_READY { #state3 = abi.RF_PANIC; runtime.panicrangestate(#state3) }
#state3 = abi.RF_PANIC
...
{
// break F
#next = 2
#state3 = abi.RF_DONE
return false
}
...
{
// continue F
#next = 1
#state3 = abi.RF_DONE
return false
}
...
#state3 = abi.RF_READY
return true
})
if #state3 == abi.RF_PANIC {
panic(runtime.panicrangestate(abi.RF_MISSING_PANIC))
}
#state3 = abi.RF_EXHAUSTED
if #next != 0 {
// no breaks or continues targeting this loop
#state2 = abi.RF_DONE
return false
}
return true
})
if #state2 == abi.RF_PANIC {
panic(runtime.panicrangestate(abi.RF_MISSING_PANIC))
}
#state2 = abi.RF_EXHAUSTED
if #next != 0 { // just exited g, test for break/continue applied to f/F
if #next >= 1 {
if #next >= 3 { runtime.panicrangestate(abi.RF_DONE) } // error
rv := #next&1 == 1
#next = 0
return rv
}
#state1 = abi.RF_DONE
return false
}
...
return true
})
if #state1 == abi.RF_PANIC {
panic(runtime.panicrangestate(abi.RF_MISSING_PANIC))
}
#state1 = abi.RF_EXHAUSTED
}
Note that the post-h checks only consider a break,
since no generated code tries to continue g.
# Gotos and other labeled break/continue
The final control flow translations are goto and break/continue of a
non-range-over-func statement. In both cases, we may need to break
out of one or more range-over-func loops before we can do the actual
control flow statement. Each such break/continue/goto L statement is
assigned a unique negative #next value (since -1 is return). Then
the post-checks for a given loop test for the specific codes that
refer to labels directly targetable from that block. Otherwise, the
generic
if #next < 0 { return false }
check handles stopping the next loop to get one step closer to the label.
For example
Top: print("start\n")
for range f {
for range g {
...
for range h {
...
goto Top
...
}
}
}
becomes
Top: print("start\n")
{
var #next int
var #state1 = abi.RF_READY
f(func() {
if #state1 != abi.RF_READY{ #state1 = abi.RF_PANIC; runtime.panicrangestate(#state1) }
#state1 = abi.RF_PANIC
var #state2 = abi.RF_READY
g(func() {
if #state2 != abi.RF_READY { #state2 = abi.RF_PANIC; runtime.panicrangestate(#state2) }
#state2 = abi.RF_PANIC
...
var #state3 bool = abi.RF_READY
h(func() {
if #state3 != abi.RF_READY { #state3 = abi.RF_PANIC; runtime.panicrangestate(#state3) }
#state3 = abi.RF_PANIC
...
{
// goto Top
#next = -3
#state3 = abi.RF_DONE
return false
}
...
#state3 = abi.RF_READY
return true
})
if #state3 == abi.RF_PANIC {runtime.panicrangestate(abi.RF_MISSING_PANIC)}
#state3 = abi.RF_EXHAUSTED
if #next < 0 {
#state2 = abi.RF_DONE
return false
}
#state2 = abi.RF_READY
return true
})
if #state2 == abi.RF_PANIC {runtime.panicrangestate(abi.RF_MISSING_PANIC)}
#state2 = abi.RF_EXHAUSTED
if #next < 0 {
#state1 = abi.RF_DONE
return false
}
#state1 = abi.RF_READY
return true
})
if #state1 == abi.RF_PANIC {runtime.panicrangestate(abi.RF_MISSING_PANIC)}
#state1 = abi.RF_EXHAUSTED
if #next == -3 {
#next = 0
goto Top
}
}
Labeled break/continue to non-range-over-funcs are handled the same
way as goto.
# Defers
The last wrinkle is handling defer statements. If we have
for range f {
defer print("A")
}
we cannot rewrite that into
f(func() {
defer print("A")
})
because the deferred code will run at the end of the iteration, not
the end of the containing function. To fix that, the runtime provides
a special hook that lets us obtain a defer "token" representing the
outer function and then use it in a later defer to attach the deferred
code to that outer function.
Normally,
defer print("A")
compiles to
runtime.deferproc(func() { print("A") })
This changes in a range-over-func. For example:
for range f {
defer print("A")
}
compiles to
var #defers = runtime.deferrangefunc()
f(func() {
runtime.deferprocat(func() { print("A") }, #defers)
})
For this rewriting phase, we insert the explicit initialization of
#defers and then attach the #defers variable to the CallStmt
representing the defer. That variable will be propagated to the
backend and will cause the backend to compile the defer using
deferprocat instead of an ordinary deferproc.
TODO: Could call runtime.deferrangefuncend after f.
*/
package rangefunc
import (
"cmd/compile/internal/base"
"cmd/compile/internal/syntax"
"cmd/compile/internal/types2"
"fmt"
"go/constant"
"internal/abi"
"os"
)
// nopos is the zero syntax.Pos.
var nopos syntax.Pos
// A rewriter implements rewriting the range-over-funcs in a given function.
type rewriter struct {
pkg *types2.Package
info *types2.Info
sig *types2.Signature
outer *syntax.FuncType
body *syntax.BlockStmt
// References to important types and values.
any types2.Object
bool types2.Object
int types2.Object
true types2.Object
false types2.Object
// Branch numbering, computed as needed.
branchNext map[branch]int // branch -> #next value
labelLoop map[string]*syntax.ForStmt // label -> innermost rangefunc loop it is declared inside (nil for no loop)
// Stack of nodes being visited.
stack []syntax.Node // all nodes
forStack []*forLoop // range-over-func loops
rewritten map[*syntax.ForStmt]syntax.Stmt
// Declared variables in generated code for outermost loop.
declStmt *syntax.DeclStmt
nextVar types2.Object
defers types2.Object
stateVarCount int // stateVars are referenced from their respective loops
bodyClosureCount int // to help the debugger, the closures generated for loop bodies get names
rangefuncBodyClosures map[*syntax.FuncLit]bool
}
// A branch is a single labeled branch.
type branch struct {
tok syntax.Token
label string
}
// A forLoop describes a single range-over-func loop being processed.
type forLoop struct {
nfor *syntax.ForStmt // actual syntax
stateVar *types2.Var // #state variable for this loop
stateVarDecl *syntax.VarDecl
depth int // outermost loop has depth 1, otherwise depth = depth(parent)+1
checkRet bool // add check for "return" after loop
checkBreak bool // add check for "break" after loop
checkContinue bool // add check for "continue" after loop
checkBranch []branch // add check for labeled branch after loop
}
type State int
// Rewrite rewrites all the range-over-funcs in the files.
// It returns the set of function literals generated from rangefunc loop bodies.
// This allows for rangefunc loop bodies to be distinguished by debuggers.
func Rewrite(pkg *types2.Package, info *types2.Info, files []*syntax.File) map[*syntax.FuncLit]bool {
ri := make(map[*syntax.FuncLit]bool)
for _, file := range files {
syntax.Inspect(file, func(n syntax.Node) bool {
switch n := n.(type) {
case *syntax.FuncDecl:
sig, _ := info.Defs[n.Name].Type().(*types2.Signature)
rewriteFunc(pkg, info, n.Type, n.Body, sig, ri)
return false
case *syntax.FuncLit:
sig, _ := info.Types[n].Type.(*types2.Signature)
if sig == nil {
tv := n.GetTypeInfo()
sig = tv.Type.(*types2.Signature)
}
rewriteFunc(pkg, info, n.Type, n.Body, sig, ri)
return false
}
return true
})
}
return ri
}
// rewriteFunc rewrites all the range-over-funcs in a single function (a top-level func or a func literal).
// The typ and body are the function's type and body.
func rewriteFunc(pkg *types2.Package, info *types2.Info, typ *syntax.FuncType, body *syntax.BlockStmt, sig *types2.Signature, ri map[*syntax.FuncLit]bool) {
if body == nil {
return
}
r := &rewriter{
pkg: pkg,
info: info,
outer: typ,
body: body,
sig: sig,
rangefuncBodyClosures: ri,
}
syntax.Inspect(body, r.inspect)
if (base.Flag.W != 0) && r.forStack != nil {
syntax.Fdump(os.Stderr, body)
}
}
// checkFuncMisuse reports whether to check for misuse of iterator callbacks functions.
func (r *rewriter) checkFuncMisuse() bool {
return base.Debug.RangeFuncCheck != 0
}
// inspect is a callback for syntax.Inspect that drives the actual rewriting.
// If it sees a func literal, it kicks off a separate rewrite for that literal.
// Otherwise, it maintains a stack of range-over-func loops and
// converts each in turn.
func (r *rewriter) inspect(n syntax.Node) bool {
switch n := n.(type) {
case *syntax.FuncLit:
sig, _ := r.info.Types[n].Type.(*types2.Signature)
if sig == nil {
tv := n.GetTypeInfo()
sig = tv.Type.(*types2.Signature)
}
rewriteFunc(r.pkg, r.info, n.Type, n.Body, sig, r.rangefuncBodyClosures)
return false
default:
// Push n onto stack.
r.stack = append(r.stack, n)
if nfor, ok := forRangeFunc(n); ok {
loop := &forLoop{nfor: nfor, depth: 1 + len(r.forStack)}
r.forStack = append(r.forStack, loop)
r.startLoop(loop)
}
case nil:
// n == nil signals that we are done visiting
// the top-of-stack node's children. Find it.
n = r.stack[len(r.stack)-1]
// If we are inside a range-over-func,
// take this moment to replace any break/continue/goto/return
// statements directly contained in this node.
// Also replace any converted for statements
// with the rewritten block.
switch n := n.(type) {
case *syntax.BlockStmt:
for i, s := range n.List {
n.List[i] = r.editStmt(s)
}
case *syntax.CaseClause:
for i, s := range n.Body {
n.Body[i] = r.editStmt(s)
}
case *syntax.CommClause:
for i, s := range n.Body {
n.Body[i] = r.editStmt(s)
}
case *syntax.LabeledStmt:
n.Stmt = r.editStmt(n.Stmt)
}
// Pop n.
if len(r.forStack) > 0 && r.stack[len(r.stack)-1] == r.forStack[len(r.forStack)-1].nfor {
r.endLoop(r.forStack[len(r.forStack)-1])
r.forStack = r.forStack[:len(r.forStack)-1]
}
r.stack = r.stack[:len(r.stack)-1]
}
return true
}
// startLoop sets up for converting a range-over-func loop.
func (r *rewriter) startLoop(loop *forLoop) {
// For first loop in function, allocate syntax for any, bool, int, true, and false.
if r.any == nil {
r.any = types2.Universe.Lookup("any")
r.bool = types2.Universe.Lookup("bool")
r.int = types2.Universe.Lookup("int")
r.true = types2.Universe.Lookup("true")
r.false = types2.Universe.Lookup("false")
r.rewritten = make(map[*syntax.ForStmt]syntax.Stmt)
}
if r.checkFuncMisuse() {
// declare the state flag for this loop's body
loop.stateVar, loop.stateVarDecl = r.stateVar(loop.nfor.Pos())
}
}
// editStmt returns the replacement for the statement x,
// or x itself if it should be left alone.
// This includes the for loops we are converting,
// as left in x.rewritten by r.endLoop.
func (r *rewriter) editStmt(x syntax.Stmt) syntax.Stmt {
if x, ok := x.(*syntax.ForStmt); ok {
if s := r.rewritten[x]; s != nil {
return s
}
}
if len(r.forStack) > 0 {
switch x := x.(type) {
case *syntax.BranchStmt:
return r.editBranch(x)
case *syntax.CallStmt:
if x.Tok == syntax.Defer {
return r.editDefer(x)
}
case *syntax.ReturnStmt:
return r.editReturn(x)
}
}
return x
}
// editDefer returns the replacement for the defer statement x.
// See the "Defers" section in the package doc comment above for more context.
func (r *rewriter) editDefer(x *syntax.CallStmt) syntax.Stmt {
if r.defers == nil {
// Declare and initialize the #defers token.
init := &syntax.CallExpr{
Fun: runtimeSym(r.info, "deferrangefunc"),
}
tv := syntax.TypeAndValue{Type: r.any.Type()}
tv.SetIsValue()
init.SetTypeInfo(tv)
r.defers = r.declOuterVar("#defers", r.any.Type(), init)
}
// Attach the token as an "extra" argument to the defer.
x.DeferAt = r.useObj(r.defers)
setPos(x.DeferAt, x.Pos())
return x
}
func (r *rewriter) stateVar(pos syntax.Pos) (*types2.Var, *syntax.VarDecl) {
r.stateVarCount++
name := fmt.Sprintf("#state%d", r.stateVarCount)
typ := r.int.Type()
obj := types2.NewVar(pos, r.pkg, name, typ)
n := syntax.NewName(pos, name)
setValueType(n, typ)
r.info.Defs[n] = obj
return obj, &syntax.VarDecl{NameList: []*syntax.Name{n}, Values: r.stateConst(abi.RF_READY)}
}
// editReturn returns the replacement for the return statement x.
// See the "Return" section in the package doc comment above for more context.
func (r *rewriter) editReturn(x *syntax.ReturnStmt) syntax.Stmt {
bl := &syntax.BlockStmt{}
if x.Results != nil {
// rewrite "return val" into "assign to named result; return"
if len(r.outer.ResultList) > 0 {
// Make sure that result parameters all have names
for i, a := range r.outer.ResultList {
if a.Name == nil || a.Name.Value == "_" {
r.generateParamName(r.outer.ResultList, i) // updates a.Name
}
}
}
// Assign to named results
results := []types2.Object{}
for _, a := range r.outer.ResultList {
results = append(results, r.info.Defs[a.Name])
}
bl.List = append(bl.List, &syntax.AssignStmt{Lhs: r.useList(results), Rhs: x.Results})
x.Results = nil
}
next := -1 // return
// Tell the loops along the way to check for a return.
for _, loop := range r.forStack {
loop.checkRet = true
}
// Set #next, and return false.
bl.List = append(bl.List, &syntax.AssignStmt{Lhs: r.next(), Rhs: r.intConst(next)})
if r.checkFuncMisuse() {
// mark this loop as exited, the others (which will be exited if iterators do not interfere) have not, yet.
bl.List = append(bl.List, r.setState(abi.RF_DONE, x.Pos()))
}
bl.List = append(bl.List, &syntax.ReturnStmt{Results: r.useObj(r.false)})
setPos(bl, x.Pos())
return bl
}
// perLoopStep is part of the encoding of loop-spanning control flow
// for function range iterators. Each multiple of two encodes a "return false"
// passing control to an enclosing iterator; a terminal value of 1 encodes
// "return true" (i.e., local continue) from the body function, and a terminal
// value of 0 encodes executing the remainder of the body function.
const perLoopStep = 2
// editBranch returns the replacement for the branch statement x,
// or x itself if it should be left alone.
// See the package doc comment above for more context.
func (r *rewriter) editBranch(x *syntax.BranchStmt) syntax.Stmt {
if x.Tok == syntax.Fallthrough {
// Fallthrough is unaffected by the rewrite.
return x
}
// Find target of break/continue/goto in r.forStack.
// (The target may not be in r.forStack at all.)
targ := x.Target
i := len(r.forStack) - 1
if x.Label == nil && r.forStack[i].nfor != targ {
// Unlabeled break or continue that's not nfor must be inside nfor. Leave alone.
return x
}
for i >= 0 && r.forStack[i].nfor != targ {
i--
}
// exitFrom is the index of the loop interior to the target of the control flow,
// if such a loop exists (it does not if i == len(r.forStack) - 1)
exitFrom := i + 1
// Compute the value to assign to #next and the specific return to use.
var next int
var ret *syntax.ReturnStmt
if x.Tok == syntax.Goto || i < 0 {
// goto Label
// or break/continue of labeled non-range-over-func loop (x.Label != nil).
// We may be able to leave it alone, or we may have to break
// out of one or more nested loops and then use #next to signal
// to complete the break/continue/goto.
// Figure out which range-over-func loop contains the label.
r.computeBranchNext()
nfor := r.forStack[len(r.forStack)-1].nfor
label := x.Label.Value
targ := r.labelLoop[label]
if nfor == targ {
// Label is in the innermost range-over-func loop; use it directly.
return x
}
// Set #next to the code meaning break/continue/goto label.
next = r.branchNext[branch{x.Tok, label}]
// Break out of nested loops up to targ.
i := len(r.forStack) - 1
for i >= 0 && r.forStack[i].nfor != targ {
i--
}
exitFrom = i + 1
// Mark loop we exit to get to targ to check for that branch.
// When i==-1 / exitFrom == 0 that's the outermost func body.
top := r.forStack[exitFrom]
top.checkBranch = append(top.checkBranch, branch{x.Tok, label})
// Mark loops along the way to check for a plain return, so they break.
for j := exitFrom + 1; j < len(r.forStack); j++ {
r.forStack[j].checkRet = true
}
// In the innermost loop, use a plain "return false".
ret = &syntax.ReturnStmt{Results: r.useObj(r.false)}
} else {
// break/continue of labeled range-over-func loop.
if exitFrom == len(r.forStack) {
// Simple break or continue.
// Continue returns true, break returns false, optionally both adjust state,
// neither modifies #next.
var state abi.RF_State
if x.Tok == syntax.Continue {
ret = &syntax.ReturnStmt{Results: r.useObj(r.true)}
state = abi.RF_READY
} else {
ret = &syntax.ReturnStmt{Results: r.useObj(r.false)}
state = abi.RF_DONE
}
var stmts []syntax.Stmt
if r.checkFuncMisuse() {
stmts = []syntax.Stmt{r.setState(state, x.Pos()), ret}
} else {
stmts = []syntax.Stmt{ret}
}
bl := &syntax.BlockStmt{
List: stmts,
}
setPos(bl, x.Pos())
return bl
}
ret = &syntax.ReturnStmt{Results: r.useObj(r.false)}
// The loop inside the one we are break/continue-ing
// needs to make that happen when we break out of it.
if x.Tok == syntax.Continue {
r.forStack[exitFrom].checkContinue = true
} else {
exitFrom = i // exitFrom--
r.forStack[exitFrom].checkBreak = true
}
// The loops along the way just need to break.
for j := exitFrom + 1; j < len(r.forStack); j++ {
r.forStack[j].checkBreak = true
}
// Set next to break the appropriate number of times;
// the final time may be a continue, not a break.
next = perLoopStep * (i + 1)
if x.Tok == syntax.Continue {
next--
}
}
// Assign #next = next and do the return.
as := &syntax.AssignStmt{Lhs: r.next(), Rhs: r.intConst(next)}
bl := &syntax.BlockStmt{
List: []syntax.Stmt{as},
}
if r.checkFuncMisuse() {
// Set #stateK for this loop.
// The exterior loops have not exited yet, and the iterator might interfere.
bl.List = append(bl.List, r.setState(abi.RF_DONE, x.Pos()))
}
bl.List = append(bl.List, ret)
setPos(bl, x.Pos())
return bl
}
// computeBranchNext computes the branchNext numbering
// and determines which labels end up inside which range-over-func loop bodies.
func (r *rewriter) computeBranchNext() {
if r.labelLoop != nil {
return
}
r.labelLoop = make(map[string]*syntax.ForStmt)
r.branchNext = make(map[branch]int)
var labels []string
var stack []syntax.Node
var forStack []*syntax.ForStmt
forStack = append(forStack, nil)
syntax.Inspect(r.body, func(n syntax.Node) bool {
if n != nil {
stack = append(stack, n)
if nfor, ok := forRangeFunc(n); ok {
forStack = append(forStack, nfor)
}
if n, ok := n.(*syntax.LabeledStmt); ok {
l := n.Label.Value
labels = append(labels, l)
f := forStack[len(forStack)-1]
r.labelLoop[l] = f
}
} else {
n := stack[len(stack)-1]