-
Notifications
You must be signed in to change notification settings - Fork 731
/
run-prereq.sh
executable file
·304 lines (259 loc) · 13.4 KB
/
run-prereq.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#!/bin/bash
# Copyright 2017 Google LLC.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# 1. Redistributions of source code must retain the above copyright notice,
# this list of conditions and the following disclaimer.
#
# 2. Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
#
# 3. Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from this
# software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# This installs all the libraries (python, dso, etc) that are needed
# by DeepVariant at runtime (except for tensorflow, which is special).
# Some extra stuff may also be included.
set -euo pipefail
echo ========== This script is only maintained for Ubuntu 22.04.
echo ========== Load config settings.
source settings.sh
################################################################################
# misc setup
################################################################################
note_build_stage "Misc setup"
APT_ARGS=(
"-qq"
"-y"
)
if [[ "$EUID" = "0" ]]; then
# Just in case:
# https://github.com/NVIDIA/nvidia-docker/issues/1632#issuecomment-1112667716
rm -f /etc/apt/sources.list.d/cuda.list
rm -f /etc/apt/sources.list.d/nvidia-ml.list
# Ensure sudo exists, even if we don't need it.
apt-get update "${APT_ARGS[@]}" > /dev/null
apt-get install "${APT_ARGS[@]}" sudo > /dev/null
PIP_ARGS=(
"-qq")
else
PIP_ARGS=(
"--user"
"-qq")
fi
note_build_stage "Update package list"
sudo -H apt-get update "${APT_ARGS[@]}" > /dev/null
note_build_stage "run-prereq.sh: Install development packages"
# Need to wait for dpkg lock (see internal)
wait_for_dpkg_lock
# See https://askubuntu.com/questions/909277.
sudo -H DEBIAN_FRONTEND=noninteractive apt-get install "${APT_ARGS[@]}" pkg-config zip zlib1g-dev unzip curl git wget > /dev/null
sudo -H apt-get install "${APT_ARGS[@]}" python3-distutils > /dev/null
note_build_stage "Install python3 packaging infrastructure"
# Avoid issue with pip's dependency resolver not accounting for all installed
# packages.
sudo -H apt-get install "${APT_ARGS[@]}" "python3-testresources"
# Fix this error:
# "error: command 'x86_64-linux-gnu-gcc' failed: No such file or directory"
sudo -H apt-get install "${APT_ARGS[@]}" "gcc"
# If we install python3-pip directly, the pip3 version points to:
# pip 8.1.1 from /usr/lib/python3/dist-packages (python 3.5)
# Use the following lines to ensure correct Python version.
curl -o get-pip.py https://bootstrap.pypa.io/get-pip.py
python3 get-pip.py --force-reinstall --user
rm -f get-pip.py
echo "$(python3 --version)"
export PATH="$HOME/.local/bin":$PATH
echo "$(pip3 --version)"
################################################################################
# python packages
################################################################################
note_build_stage "Install python3 packages"
pip3 install "${PIP_ARGS[@]}" contextlib2
pip3 install "${PIP_ARGS[@]}" etils typing_extensions importlib_resources
pip3 install "${PIP_ARGS[@]}" 'enum34==1.1.8'
pip3 install "${PIP_ARGS[@]}" 'sortedcontainers==2.1.0'
pip3 install "${PIP_ARGS[@]}" 'intervaltree==3.0.2'
pip3 install "${PIP_ARGS[@]}" 'mock>=2.0.0'
pip3 install "${PIP_ARGS[@]}" ml_collections
pip3 install "${PIP_ARGS[@]}" --ignore-installed PyYAML
pip3 install "${PIP_ARGS[@]}" 'clu==0.0.9'
# Note that protobuf installed with pip needs to be 3.13 because of the pyclif
# version we're using. This is currently inconsistent with C++ protobuf version
# in WORKSPACE and protobuf.BUILD, but we can't update those, because those
# files need to be consistent with what TensorFlow needs, which is currently
# still 3.9.2.
# Ideally we want to make these protobuf versions all match, eventually.
pip3 install "${PIP_ARGS[@]}" 'protobuf==3.13.0'
pip3 install "${PIP_ARGS[@]}" 'argparse==1.4.0'
pip3 install "${PIP_ARGS[@]}" "numpy==${DV_TF_NUMPY_VERSION}"
# Reason:
# ========== [Wed Dec 11 19:57:32 UTC 2019] Stage 'Install python3 packages' starting
# ERROR: pyasn1-modules 0.2.7 has requirement pyasn1<0.5.0,>=0.4.6, but you'll have pyasn1 0.1.9 which is incompatible.
pip3 install "${PIP_ARGS[@]}" 'pyasn1<0.5.0,>=0.4.6'
pip3 install "${PIP_ARGS[@]}" 'requests>=2.18'
pip3 install "${PIP_ARGS[@]}" --ignore-installed 'oauth2client>=4.0.0'
pip3 install "${PIP_ARGS[@]}" 'crcmod>=1.7'
pip3 install "${PIP_ARGS[@]}" 'six>=1.11.0'
pip3 install "${PIP_ARGS[@]}" joblib
pip3 install "${PIP_ARGS[@]}" psutil
pip3 install "${PIP_ARGS[@]}" --upgrade google-api-python-client
pip3 install "${PIP_ARGS[@]}" 'pandas==1.3.4'
# We manually install jsonschema here to pin it to v3.2.0, since
# the latest v4.0.1 has issues with Altair v4.1.0.
# See https://github.com/altair-viz/altair/issues/2496
# If Altair version is updated below, the jsonschema version
# should also be updated accordingly.
pip3 install "${PIP_ARGS[@]}" 'jsonschema==3.2.0'
pip3 install "${PIP_ARGS[@]}" 'altair==4.1.0'
pip3 install "${PIP_ARGS[@]}" 'Pillow==9.5.0'
pip3 install "${PIP_ARGS[@]}" 'ipython==8.22.2'
pip3 install "${PIP_ARGS[@]}" 'pysam==0.20.0'
pip3 install "${PIP_ARGS[@]}" 'scikit-learn==1.0.2'
pip3 install "${PIP_ARGS[@]}" 'tensorflow-addons==0.21.0'
# This is to avoid ERROR: No matching distribution found for opencv-python-headless==4.5.2.52.
# TODO: Make this the same as ${DV_GCP_OPTIMIZED_TF_WHL_VERSION}" later
pip3 install "${PIP_ARGS[@]}" "tf-models-official==2.13.1"
################################################################################
# TensorFlow
################################################################################
note_build_stage "Install TensorFlow pip package"
if [[ "${DV_USE_PREINSTALLED_TF}" = "1" ]]; then
echo "Skipping TensorFlow installation at user request; will use pre-installed TensorFlow."
else
# Also pip install the latest TensorFlow with cpu support. We don't build the
# full TF from source, but instead using prebuilt version. However, we still
# need the full source version to build DeepVariant.
# Gets the nightly TF build: https://pypi.python.org/pypi/tf-nightly which is
# necessary right now if we aren't pinning the TF source. We have observed
# runtime failures if there's too much skew between the released TF package and
# the source.
if [[ "${DV_TF_NIGHTLY_BUILD}" = "1" ]]; then
if [[ "${DV_GPU_BUILD}" = "1" ]]; then
echo "Installing GPU-enabled TensorFlow nightly wheel"
pip3 install "${PIP_ARGS[@]}" --upgrade tf_nightly_gpu
else
echo "Installing CPU-only TensorFlow nightly wheel"
pip3 install "${PIP_ARGS[@]}" --upgrade tf_nightly
fi
else
# Use the official TF release pip package.
if [[ "${DV_GPU_BUILD}" = "1" ]]; then
echo "Installing GPU-enabled TensorFlow ${DV_TENSORFLOW_STANDARD_GPU_WHL_VERSION} wheel"
pip3 install "${PIP_ARGS[@]}" --upgrade "tensorflow-gpu==${DV_TENSORFLOW_STANDARD_GPU_WHL_VERSION}"
else
echo "Installing CPU TensorFlow ${DV_TENSORFLOW_STANDARD_CPU_WHL_VERSION} wheel"
pip3 install "${PIP_ARGS[@]}" --upgrade "tensorflow==${DV_TENSORFLOW_STANDARD_CPU_WHL_VERSION}"
fi
fi
fi
# A temporary fix.
# Context: intel-tensorflow 2.7.0 will end up updating markupsafe to 2.1.1,
# which caused the issue here: https://github.com/pallets/markupsafe/issues/286.
# Specifically:
# ImportError: cannot import name 'soft_unicode' from 'markupsafe'.
# So, forcing a downgrade. This isn't the best solution, but we need it to get
# our tests pass.
pip3 install "${PIP_ARGS[@]}" --upgrade 'markupsafe==2.0.1'
################################################################################
# CUDA
################################################################################
note_build_stage "Install CUDA"
# See https://www.tensorflow.org/install/source#gpu for versions required.
if [[ "${DV_GPU_BUILD}" = "1" ]]; then
if [[ "${DV_INSTALL_GPU_DRIVERS}" = "1" ]]; then
# This script is only maintained for Ubuntu 22.04.
echo "Checking for CUDA..."
if ! dpkg-query -W cuda-11-8; then
echo "Installing CUDA..."
UBUNTU_VERSION="2204"
curl -O https://developer.download.nvidia.com/compute/cuda/repos/ubuntu${UBUNTU_VERSION}/x86_64/cuda-ubuntu${UBUNTU_VERSION}.pin
sudo mv cuda-ubuntu${UBUNTU_VERSION}.pin /etc/apt/preferences.d/cuda-repository-pin-600
curl https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pub | gpg --dearmor | sudo tee /usr/share/keyrings/nvidia-cuda-archive-keyring.gpg > /dev/null
echo \
"deb [signed-by=/usr/share/keyrings/nvidia-cuda-archive-keyring.gpg] https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /" | \
sudo tee /etc/apt/sources.list.d/cuda.list > /dev/null
sudo -H NEEDRESTART_MODE=a apt-get update "${APT_ARGS[@]}"
sudo -H DEBIAN_FRONTEND=noninteractive NEEDRESTART_MODE=a apt-get full-upgrade "${APT_ARGS[@]}"
sudo -H DEBIAN_FRONTEND=noninteractive NEEDRESTART_MODE=a apt-get install "${APT_ARGS[@]}" cuda-11-8
fi
echo "Checking for CUDNN..."
if [[ ! -e /usr/local/cuda-11/include/cudnn.h ]]; then
echo "Installing CUDNN..."
CUDNN_TAR_FILE="cudnn-linux-x86_64-8.6.0.163_cuda11-archive.tar.xz"
wget -q https://developer.download.nvidia.com/compute/redist/cudnn/v8.6.0/local_installers/11.8/${CUDNN_TAR_FILE}
tar -xvf ${CUDNN_TAR_FILE}
sudo cp -P cudnn-linux-x86_64-8.6.0.163_cuda11-archive/include/cudnn.h /usr/local/cuda-11/include
sudo cp -P cudnn-linux-x86_64-8.6.0.163_cuda11-archive/lib/libcudnn* /usr/local/cuda-11/lib64/
sudo chmod a+r /usr/local/cuda-11/lib64/libcudnn*
sudo ldconfig
fi
# Tensorflow says to do this.
sudo -H NEEDRESTART_MODE=a apt-get install "${APT_ARGS[@]}" libcupti-dev > /dev/null
fi
# If we are doing a gpu-build, nvidia-smi should be install. Run it so we
# can see what gpu is installed.
nvidia-smi || :
fi
################################################################################
# TensorRT
################################################################################
note_build_stage "Install TensorRT"
# Address the issue:
# 'dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory'
# It's unclear whether we need this or not. Setting up to get rid of the errors.
if [[ "${DV_GPU_BUILD}" = "1" ]]; then
pip3 install "${PIP_ARGS[@]}" nvidia-tensorrt
echo "For debugging:"
pip3 show nvidia-tensorrt
TENSORRT_PATH=$(python3 -c 'import tensorrt; print(tensorrt.__path__[0])')
# In v8.6.1, the libs got moved to tensorrt_libs:
# https://docs.nvidia.com/deeplearning/tensorrt/release-notes/index.html#rel-8-6-1
sudo ln -sf "${TENSORRT_PATH}_libs/libnvinfer.so.8" "${TENSORRT_PATH}_libs/libnvinfer.so.7"
sudo ln -sf "${TENSORRT_PATH}_libs/libnvinfer_plugin.so.8" "${TENSORRT_PATH}_libs/libnvinfer_plugin.so.7"
export LD_LIBRARY_PATH="${LD_LIBRARY_PATH-}:${TENSORRT_PATH}_libs"
sudo ldconfig
# Just in case this still doesn't work, we link them.
# This is a workaround that we might want to get rid of, if we can make sure
# setting LD_LIBRARY_PATH and `sudo ldconfig`` works.
if [[ ! -e /usr/local/nvidia/lib ]]; then
sudo mkdir -p /usr/local/nvidia/lib
sudo ln -sf "${TENSORRT_PATH}_libs/libnvinfer.so.7" /usr/local/nvidia/lib/libnvinfer.so.7
sudo ln -sf "${TENSORRT_PATH}_libs/libnvinfer_plugin.so.7" /usr/local/nvidia/lib/libnvinfer_plugin.so.7
fi
fi
################################################################################
# Misc dependencies
################################################################################
note_build_stage "Install other packages"
# for htslib
sudo -H NEEDRESTART_MODE=a apt-get install "${APT_ARGS[@]}" libssl-dev libcurl4-openssl-dev liblz-dev libbz2-dev liblzma-dev > /dev/null
# for the debruijn graph
sudo -H NEEDRESTART_MODE=a apt-get install "${APT_ARGS[@]}" libboost-graph-dev > /dev/null
# Pin tf-models-official back to 2.11.6 to be closer to
# ${DV_GCP_OPTIMIZED_TF_WHL_VERSION} (which is 2.11.0).
# This is to avoid the issue:
# ValueError: Addons>LAMB has already been registered to <class 'tensorflow_addons.optimizers.lamb.LAMB'>
# However, it's important that the protobuf pinning happens after this!
# TODO: Remove this later once the first dependency can be changed
# to ${DV_GCP_OPTIMIZED_TF_WHL_VERSION}.
pip3 install "${PIP_ARGS[@]}" "tf-models-official==2.11.6"
# Just being safe, pin protobuf's version one more time.
pip3 install "${PIP_ARGS[@]}" 'protobuf==3.13.0'
note_build_stage "run-prereq.sh complete"