-
Notifications
You must be signed in to change notification settings - Fork 92
/
Copy pathtrain_waterworld_ma.py
162 lines (144 loc) · 5.66 KB
/
train_waterworld_ma.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Copyright 2022 The EvoJAX Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Train a population of agents to solve the WaterWorld task.
In this task, agents (yellow) tries to catch as much food (green) as possible
while avoiding poisons (red). We wish to feature that it is possible to train
multiple agents in a single task in EvoJAX.
This task is based on:
https://cs.stanford.edu/people/karpathy/reinforcejs/waterworld.html
Example command to run this script:
`python train_waterworld_ma.py --gpu-id=0 --max-iter=3000`
"""
import argparse
import os
import shutil
import jax
import jax.numpy as jnp
from evojax.task.ma_waterworld import MultiAgentWaterWorld
from evojax.policy.mlp import MLPPolicy
from evojax.algo import PGPE
from evojax import Trainer
from evojax import util
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--hidden-size', type=int, default=100, help='Policy hidden size.')
parser.add_argument(
'--num-tests', type=int, default=100, help='Number of test rollouts.')
parser.add_argument(
'--n-repeats', type=int, default=64, help='Training repetitions.')
parser.add_argument(
'--max-iter', type=int, default=1000, help='Max training iterations.')
parser.add_argument(
'--test-interval', type=int, default=100, help='Test interval.')
parser.add_argument(
'--log-interval', type=int, default=10, help='Logging interval.')
parser.add_argument(
'--seed', type=int, default=42, help='Random seed for training.')
parser.add_argument(
'--center-lr', type=float, default=0.011, help='Center learning rate.')
parser.add_argument(
'--std-lr', type=float, default=0.054, help='Std learning rate.')
parser.add_argument(
'--init-std', type=float, default=0.095, help='Initial std.')
parser.add_argument(
'--gpu-id', type=str, help='GPU(s) to use.')
parser.add_argument(
'--debug', action='store_true', help='Debug mode.')
config, _ = parser.parse_known_args()
return config
def main(config):
log_dir = './log/water_world_ma'
if not os.path.exists(log_dir):
os.makedirs(log_dir, exist_ok=True)
logger = util.create_logger(
name='MultiAgentWaterWorld', log_dir=log_dir, debug=config.debug)
logger.info('EvoJAX MultiAgentWaterWorld')
logger.info('=' * 30)
num_agents = 16
max_steps = 500
train_task = MultiAgentWaterWorld(
num_agents=num_agents, test=False, max_steps=max_steps)
test_task = MultiAgentWaterWorld(
num_agents=num_agents, test=True, max_steps=max_steps)
policy = MLPPolicy(
input_dim=train_task.obs_shape[-1],
hidden_dims=[config.hidden_size, ],
output_dim=train_task.act_shape[-1],
output_act_fn='softmax',
)
solver = PGPE(
pop_size=num_agents,
param_size=policy.num_params,
optimizer='adam',
center_learning_rate=config.center_lr,
stdev_learning_rate=config.std_lr,
init_stdev=config.init_std,
logger=logger,
seed=config.seed,
)
# Train.
trainer = Trainer(
policy=policy,
solver=solver,
train_task=train_task,
test_task=test_task,
max_iter=config.max_iter,
log_interval=config.log_interval,
test_interval=config.test_interval,
n_evaluations=num_agents,
n_repeats=config.n_repeats,
test_n_repeats=config.num_tests,
seed=config.seed,
log_dir=log_dir,
logger=logger,
)
trainer.run(demo_mode=False)
# Test the final model.
src_file = os.path.join(log_dir, 'best.npz')
tar_file = os.path.join(log_dir, 'model.npz')
shutil.copy(src_file, tar_file)
trainer.model_dir = log_dir
trainer.run(demo_mode=True)
# Visualize the policy.
task_reset_fn = jax.jit(test_task.reset)
policy_reset_fn = jax.jit(policy.reset)
step_fn = jax.jit(test_task.step)
action_fn = jax.jit(policy.get_actions)
best_params = jnp.repeat(
trainer.solver.best_params[None, :], num_agents, axis=0)
key = jax.random.PRNGKey(0)[None, :]
task_state = task_reset_fn(key)
policy_state = policy_reset_fn(task_state)
screens = []
for _ in range(max_steps):
num_tasks, num_agents = task_state.obs.shape[:2]
task_state = task_state.replace(
obs=task_state.obs.reshape((-1, *task_state.obs.shape[2:])))
action, policy_state = action_fn(task_state, best_params, policy_state)
action = action.reshape(num_tasks, num_agents, *action.shape[1:])
task_state = task_state.replace(
obs=task_state.obs.reshape(
num_tasks, num_agents, *task_state.obs.shape[1:]))
task_state, reward, done = step_fn(task_state, action)
screens.append(MultiAgentWaterWorld.render(task_state))
gif_file = os.path.join(log_dir, 'water_world_ma.gif')
screens[0].save(
gif_file, save_all=True, append_images=screens[1:], duration=40, loop=0)
logger.info('GIF saved to {}.'.format(gif_file))
if __name__ == '__main__':
configs = parse_args()
if configs.gpu_id is not None:
os.environ['CUDA_VISIBLE_DEVICES'] = configs.gpu_id
main(configs)