-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfigure_4.py
305 lines (254 loc) · 10.2 KB
/
figure_4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import os
import pickle
import haiku as hk
import jax.numpy as jnp
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
import tensorflow_datasets as tfds
from jax import random
from tqdm import tqdm
from models.models_haiku import MLP, SIREN
from utils.graphics import FOURIER_CMAP
from utils.meta_learn import CELEBA_BUILDER, DEFAULT_GRID, DEFAULT_RESOLUTION, process_example
from utils.ntk import ntk_eigendecomposition
def energy_eigval_treshold(eigvecs, eigvals, num_examples, ds_test):
# given eigvecs and eigvals project the num_examples many test images to eigenvectors
# returns the mean and std of the percent energy covered by eigevectors up to that index
# and the percent energy covered by eigenvectors whose eigenvalues are greater than max_eigval*treshold
energies = np.zeros((num_examples, len(eigvals)))
for i, example in tqdm(enumerate(tfds.as_numpy(ds_test))):
test_img = process_example(example, DEFAULT_RESOLUTION)
test_img = jnp.squeeze(test_img)
test_img = test_img - jnp.mean(test_img)
vec_img = test_img.flatten()
img_ntk_eigvec_basis_rep = eigvecs @ vec_img
norm_img = jnp.linalg.norm(vec_img)
energy_in_comp = jnp.square(jnp.abs(img_ntk_eigvec_basis_rep)) / jnp.square(norm_img)
percent_energy = np.zeros_like(energy_in_comp)
for j, val in enumerate(energy_in_comp):
percent_energy[j] = val + percent_energy[j - 1]
energies[i, :] = percent_energy
random_energy_mean = jnp.mean(energies, axis=0)
random_energy_std = jnp.std(energies, axis=0)
eigvals_nor = eigvals / jnp.max(eigvals)
num_eigvals_treshold = jnp.sum(eigvals_nor >= 0.1)
energy_covered = random_energy_mean[num_eigvals_treshold - 1]
return random_energy_mean, random_energy_std, energy_covered
if __name__ == "__main__":
BATCH_SIZE = 256
NUM_EXAMPLES = 100
DEFAULT_GRID = jnp.reshape(DEFAULT_GRID, [-1, 2])
outdir = os.path.join(os.getcwd(), "figures", "figure_4")
if not os.path.exists(outdir):
os.makedirs(outdir)
ds_test = CELEBA_BUILDER.as_dataset(
split="test", as_supervised=False, shuffle_files=False, batch_size=1
)
ds_test = ds_test.take(NUM_EXAMPLES)
# Build models to compare
with open("maml_celebA_5000.pickle", "rb") as handle:
params_meta = pickle.load(handle)
model_MLP = hk.without_apply_rng(hk.transform(lambda x: MLP(width=256, depth=5)(x)))
params_mlp = model_MLP.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_SIREN = hk.without_apply_rng(
hk.transform(lambda x: SIREN(w0=30, width=256, hidden_w0=30, depth=5)(x))
)
params = model_SIREN.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_SIREN_5 = hk.without_apply_rng(
hk.transform(lambda x: SIREN(w0=5, width=256, hidden_w0=30, depth=5)(x))
)
params_5 = model_SIREN_5.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_SIREN_10 = hk.without_apply_rng(
hk.transform(lambda x: SIREN(w0=10, width=256, hidden_w0=30, depth=5)(x))
)
params_10 = model_SIREN_10.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_SIREN_20 = hk.without_apply_rng(
hk.transform(lambda x: SIREN(w0=20, width=256, hidden_w0=30, depth=5)(x))
)
params_20 = model_SIREN_20.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_SIREN_40 = hk.without_apply_rng(
hk.transform(lambda x: SIREN(w0=40, width=256, hidden_w0=30, depth=5)(x))
)
params_40 = model_SIREN_40.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_SIREN_60 = hk.without_apply_rng(
hk.transform(lambda x: SIREN(w0=60, width=256, hidden_w0=30, depth=5)(x))
)
params_60 = model_SIREN_60.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_SIREN_80 = hk.without_apply_rng(
hk.transform(lambda x: SIREN(w0=80, width=256, hidden_w0=30, depth=5)(x))
)
params_80 = model_SIREN_80.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_SIREN_100 = hk.without_apply_rng(
hk.transform(lambda x: SIREN(w0=100, width=256, hidden_w0=30, depth=5)(x))
)
params_100 = model_SIREN_100.init(random.PRNGKey(0), jnp.ones((1, 2)))
# Compute their NTK eigenvectors
print("NTK eigendecomposition of SIREN-(meta)...")
eigvals_meta, eigvecs_meta, ntk_matrix_meta = ntk_eigendecomposition(
model_SIREN.apply, params_meta, data=DEFAULT_GRID, batch_size=BATCH_SIZE
)
print("NTK eigendecomposition of MLP...")
eigvals_mlp, eigvecs_mlp, ntk_matrix_mlp = ntk_eigendecomposition(
model_MLP.apply, params_mlp, data=DEFAULT_GRID, batch_size=BATCH_SIZE
)
print("NTK eigendecomposition of SIREN-5...")
eigvals_5, eigvecs_5, ntk_matrix_5 = ntk_eigendecomposition(
model_SIREN_5.apply, params_5, data=DEFAULT_GRID, batch_size=BATCH_SIZE
)
print("NTK eigendecomposition of SIREN-10...")
eigvals_10, eigvecs_10, ntk_matrix_10 = ntk_eigendecomposition(
model_SIREN_10.apply, params_10, data=DEFAULT_GRID, batch_size=BATCH_SIZE
)
print("NTK eigendecomposition of SIREN-20...")
eigvals_20, eigvecs_20, ntk_matrix_20 = ntk_eigendecomposition(
model_SIREN_20.apply, params_20, data=DEFAULT_GRID, batch_size=BATCH_SIZE
)
print("NTK eigendecomposition of SIREN-40...")
eigvals_40, eigvecs_40, ntk_matrix_40 = ntk_eigendecomposition(
model_SIREN_40.apply, params_40, data=DEFAULT_GRID, batch_size=BATCH_SIZE
)
print("NTK eigendecomposition of SIREN-60...")
eigvals_60, eigvecs_60, ntk_matrix_60 = ntk_eigendecomposition(
model_SIREN_60.apply, params_60, data=DEFAULT_GRID, batch_size=BATCH_SIZE
)
print("NTK eigendecomposition of SIREN-80...")
eigvals_80, eigvecs_80, ntk_matrix_80 = ntk_eigendecomposition(
model_SIREN_80.apply, params_80, data=DEFAULT_GRID, batch_size=BATCH_SIZE
)
print("NTK eigendecomposition of SIREN-100...")
eigvals_100, eigvecs_100, ntk_matrix_100 = ntk_eigendecomposition(
model_SIREN_100.apply, params_100, data=DEFAULT_GRID, batch_size=BATCH_SIZE
)
# Plot the energy-eigenvalue plot
print("Projecting on SIREN-(meta)...")
(
meta_energy_mean_demean,
meta_energy_std_demean,
meta_energy_covered_demean,
) = energy_eigval_treshold(
eigvecs_meta, eigvals_meta, num_examples=NUM_EXAMPLES, ds_test=ds_test
)
print("Projecting on MLP...")
(
random_energy_mean_demean_mlp,
random_energy_std_demean_mlp,
random_energy_covered_demean_mlp,
) = energy_eigval_treshold(eigvecs_mlp, eigvals_mlp, num_examples=NUM_EXAMPLES, ds_test=ds_test)
print("Projecting on SIREN-5...")
(
random_energy_mean_demean_5,
random_energy_std_demean_5,
random_energy_covered_demean_5,
) = energy_eigval_treshold(eigvecs_5, eigvals_5, num_examples=NUM_EXAMPLES, ds_test=ds_test)
print("Projecting on SIREN-10...")
(
random_energy_mean_demean_10,
random_energy_std_demean_10,
random_energy_covered_demean_10,
) = energy_eigval_treshold(eigvecs_10, eigvals_10, num_examples=NUM_EXAMPLES, ds_test=ds_test)
print("Projecting on SIREN-20...")
(
random_energy_mean_demean_20,
random_energy_std_demean_20,
random_energy_covered_demean_20,
) = energy_eigval_treshold(eigvecs_20, eigvals_20, num_examples=NUM_EXAMPLES, ds_test=ds_test)
print("Projecting on SIREN-40...")
(
random_energy_mean_demean_40,
random_energy_std_demean_40,
random_energy_covered_demean_40,
) = energy_eigval_treshold(eigvecs_40, eigvals_40, num_examples=NUM_EXAMPLES, ds_test=ds_test)
print("Projecting on SIREN-60...")
(
random_energy_mean_demean_60,
random_energy_std_demean_60,
random_energy_covered_demean_60,
) = energy_eigval_treshold(eigvecs_60, eigvals_60, num_examples=NUM_EXAMPLES, ds_test=ds_test)
print("Projecting on SIREN-80...")
(
random_energy_mean_demean_80,
random_energy_std_demean_80,
random_energy_covered_demean_80,
) = energy_eigval_treshold(eigvecs_80, eigvals_80, num_examples=NUM_EXAMPLES, ds_test=ds_test)
print("Projecting on SIREN-100...")
(
random_energy_mean_demean_100,
random_energy_std_demean_100,
random_energy_covered_demean_100,
) = energy_eigval_treshold(eigvecs_100, eigvals_100, num_examples=NUM_EXAMPLES, ds_test=ds_test)
colors = FOURIER_CMAP(jnp.linspace(0, 1, 7))
fig = plt.figure()
ax = fig.add_subplot(111)
ax.semilogx(
eigvals_mlp / jnp.max(eigvals_mlp),
random_energy_mean_demean_mlp,
label="ReLU-MLP",
linewidth=2,
linestyle="dashed",
color="slategrey",
)
ax.semilogx(
eigvals_5 / jnp.max(eigvals_5),
random_energy_mean_demean_5,
label="SIREN-5",
linewidth=2,
color=colors[0],
)
ax.semilogx(
eigvals_10 / jnp.max(eigvals_10),
random_energy_mean_demean_10,
label="SIREN-10",
linewidth=2,
color=colors[1],
)
ax.semilogx(
eigvals_20 / jnp.max(eigvals_20),
random_energy_mean_demean_20,
label="SIREN-20",
linewidth=2,
color=colors[2],
)
ax.semilogx(
eigvals_40 / jnp.max(eigvals_40),
random_energy_mean_demean_40,
label="SIREN-40",
linewidth=2,
color=colors[3],
)
ax.semilogx(
eigvals_60 / jnp.max(eigvals_60),
random_energy_mean_demean_60,
label="SIREN-60",
linewidth=2,
color=colors[4],
)
ax.semilogx(
eigvals_80 / jnp.max(eigvals_80),
random_energy_mean_demean_80,
label="SIREN-80",
linewidth=2,
color=colors[5],
)
ax.semilogx(
eigvals_100 / jnp.max(eigvals_100),
random_energy_mean_demean_100,
label="SIREN-100",
linewidth=2,
color=colors[6],
)
ax.semilogx(
eigvals_meta / jnp.max(eigvals_meta),
meta_energy_mean_demean,
label="SIREN (Meta)",
linewidth=2,
color="darkred",
)
plt.xlim(1, 1e-10)
sns.despine()
lgd = ax.legend(loc=(1.01, 0.01))
plt.savefig(
outdir + "/fig4.pdf",
bbox_extra_artists=(lgd,),
bbox_inches="tight",
)