-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfigure_5.py
183 lines (156 loc) · 5.42 KB
/
figure_5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import pickle
import haiku as hk
import jax.numpy as jnp
import matplotlib.pyplot as plt
import seaborn as sns
from jax import random
from models.models_haiku import FFN, MLP, SIREN
from utils.graphics import FOURIER_CMAP
from utils.meta_learn import DEFAULT_GRID, DEFAULT_RESOLUTION
from utils.ntk import ntk_eigendecomposition
def show_ntk_eigval_eigvec(
model,
params,
data,
batch_size,
image_size,
plot_eigvecs=range(10),
cmap="gray",
savefig=False,
keyword="",
):
outdir = os.path.join(os.getcwd(), "figures", "figure_5")
if not os.path.exists(outdir):
os.makedirs(outdir)
eigvals, eigvecs, ntk_matrix = ntk_eigendecomposition(model.apply, params, data, batch_size)
plt.figure()
plt.plot(eigvals)
sns.despine()
if savefig:
plt.savefig(outdir + os.path.sep + keyword + "eigvals" + ".pdf", bbox_inches="tight")
plt.close()
plt.figure()
plt.plot(eigvals / jnp.max(eigvals))
sns.despine()
if savefig:
plt.savefig(
outdir + os.path.sep + keyword + "eigvals_normalized" + ".pdf",
bbox_inches="tight",
)
plt.close()
for i in plot_eigvecs:
plt.figure()
v_i = eigvecs[i, :]
v_i = jnp.reshape(v_i, [image_size, image_size])
plt.imshow(v_i, cmap=cmap)
plt.axis("off")
if savefig:
plt.savefig(
outdir + os.path.sep + keyword + "eigvec" + str(i) + ".pdf",
bbox_inches="tight",
)
plt.close()
return eigvals, eigvecs, ntk_matrix
if __name__ == "__main__":
BATCH_SIZE = 128
DEFAULT_GRID = jnp.reshape(DEFAULT_GRID, [-1, 2])
# Build models to compare
model_SIREN = hk.without_apply_rng(
hk.transform(lambda x: SIREN(w0=30, width=256, hidden_w0=30, depth=5)(x))
)
params_SIREN = model_SIREN.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_MLP = hk.without_apply_rng(hk.transform(lambda x: MLP(width=256, depth=5)(x)))
params_mlp = model_MLP.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_SIREN_5 = hk.without_apply_rng(
hk.transform(lambda x: SIREN(w0=5, width=256, hidden_w0=30, depth=5)(x))
)
params_SIREN_5 = model_SIREN_5.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_SIREN_100 = hk.without_apply_rng(
hk.transform(lambda x: SIREN(w0=100, width=256, hidden_w0=30, depth=5)(x))
)
params_SIREN_100 = model_SIREN_100.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_FFN_1 = hk.without_apply_rng(hk.transform(lambda x: FFN(sigma=1, width=256, depth=5)(x)))
params_FFN_1 = model_FFN_1.init(random.PRNGKey(0), jnp.ones((1, 2)))
model_FFN_10 = hk.without_apply_rng(hk.transform(lambda x: FFN(sigma=1, width=256, depth=5)(x)))
params_FFN_10 = model_FFN_10.init(random.PRNGKey(0), jnp.ones((1, 2)))
with open("maml_celebA_5000.pickle", "rb") as handle:
params_meta = pickle.load(handle)
# Plot eigenvectors
print("Computing and plotting NTK eigenvectors of SIREN (meta)...")
eigvals_meta, eigvecs_meta, ntk_matrix_meta = show_ntk_eigval_eigvec(
model_SIREN,
params_meta,
cmap=FOURIER_CMAP,
savefig=True,
keyword="meta_maml",
data=DEFAULT_GRID,
image_size=DEFAULT_RESOLUTION,
batch_size=BATCH_SIZE,
)
print("Computing and plotting NTK eigenvectors of MLP...")
eigvals_mlp, eigvecs_mlp, ntk_matrix_mlp = show_ntk_eigval_eigvec(
model_MLP,
params_mlp,
cmap=FOURIER_CMAP,
savefig=True,
keyword="relu_mlp_",
data=DEFAULT_GRID,
image_size=DEFAULT_RESOLUTION,
batch_size=BATCH_SIZE,
)
print("Computing and plotting NTK eigenvectors of SIREN-5...")
eigvals_5, eigvecs_5, ntk_matrix_5 = show_ntk_eigval_eigvec(
model_SIREN_5,
params_SIREN_5,
cmap=FOURIER_CMAP,
savefig=True,
keyword="siren_5_",
data=DEFAULT_GRID,
image_size=DEFAULT_RESOLUTION,
batch_size=BATCH_SIZE,
)
print("Computing and plotting NTK eigenvectors of SIREN-30...")
eigvals_30, eigvecs_30, ntk_matrix_30 = show_ntk_eigval_eigvec(
model_SIREN,
params_SIREN,
cmap=FOURIER_CMAP,
savefig=True,
keyword="siren_30_",
data=DEFAULT_GRID,
image_size=DEFAULT_RESOLUTION,
batch_size=BATCH_SIZE,
)
print("Computing and plotting NTK eigenvectors of SIREN-100...")
eigvals_100, eigvecs_100, ntk_matrix_100 = show_ntk_eigval_eigvec(
model_SIREN_100,
params_SIREN_100,
cmap=FOURIER_CMAP,
savefig=True,
keyword="siren_100_",
data=DEFAULT_GRID,
image_size=DEFAULT_RESOLUTION,
batch_size=BATCH_SIZE,
)
print("Computing and plotting NTK eigenvectors of FFN-10...")
eigvals_ffn_10, eigvecs_ffn_10, ntk_matrix_ffn_10 = show_ntk_eigval_eigvec(
model_FFN_10,
params_FFN_10,
cmap=FOURIER_CMAP,
savefig=True,
keyword="ffn_10_",
data=DEFAULT_GRID,
image_size=DEFAULT_RESOLUTION,
batch_size=BATCH_SIZE,
)
print("Computing and plotting NTK eigenvectors of FFN-1...")
eigvals_ffn_1, eigvecs_ffn_1, ntk_matrix_ffn_1 = show_ntk_eigval_eigvec(
model_FFN_1,
params_FFN_1,
cmap=FOURIER_CMAP,
savefig=True,
keyword="ffn_1_",
data=DEFAULT_GRID,
image_size=DEFAULT_RESOLUTION,
batch_size=BATCH_SIZE,
)